Закат Европы. Том 1 — страница 30 из 57

[86]: personae et res[87]).

Поэтому феномен античного, целого, телесного числа невольно ищет соприкосновений с возникновением телесного человека, его σώμα[88]. Число 1 почти не воспринимается как число. Оно есть αρχη, первоначальное вещество ряда чисел, начало всех чисел в собственном смысле и, следовательно, всякой величины, меры и вещественности. В кругах пифагорейцев в любую эпоху ее числовой знак был одновременно символом материнского лона, начала всей жизни. Число 2, первое настоящее число, удвояющее 1, вследствие этого было поставлено в связь с мужским принципом, и его знак был изображением фаллоса. Наконец, священная троица пифагорийцев обозначала акт соединения мужчины и женщины, зачатия – легко понятное эротическое толкование двух единственных ценных для античности процессов увеличения, рождения величин: сложения и умножения – и знак ее состоял из соединения двух предшествующих. Отсюда падает новый свет на уже упомянутый миф о кощунстве открытия иррационального. Иррациональное, или, по нашему способу выражения, применение бесконечных десятичных дробей, равносильно разрушению органически-телесного, производящего распорядка, установленного богами. Не подлежит сомнению, что пифагорейская реформа античной религии возродила и приняла за основу древнейший культ Деметры. Деметра родственна Гее, Матери-Земле. Существует глубокая связь между поклонением ей и этим возвышенным пониманием чисел.

Таким образом, античность с внутренней необходимостью постепенно стала культурой малого. Аполлоновская душа стремилась подчинить себе смысл ставшего при помощи принципа обозримого предела; ее «табу» сочеталось с непосредственной наличностью и близостью чуждого. Что далеко, что не невидимо, того и нет. Греки и римляне приносили жертвы богам той местности, где они находились; все остальные ускользали от их кругозора. Подобно тому, как в греческом языке нет слова для обозначения пространства, – мы часто будем прибегать к мощным символам подобных явлений языка, – равным образом у греков отсутствовало наше чувство ландшафта, чувство горизонтов, видов, дали, облаков, а также понятие отечества, распространяющееся на большое пространство и охватывающее большую нацию. Родина для античного человека это только то, что он может обозреть с высоты кремля своего родного города. То, что лежит по ту сторону оптической границы этого политического атома, было чужим, даже враждебным. Здесь уже начинается страх античного существования, и этим объясняется ужасающая жестокость, с которой эти крошечные города уничтожали друг друга. Полис есть наиболее маленькая из всех мыслимых государственных форм, и его политика, определенная политика близких окрестностей, есть полная противоположность нашей кабинетной дипломатии, являющейся политикой беспредельного. Античный храм, легко обозримый с одного взгляда, является самым маленьким среди других видов античных построек. Геометрия от Архита до Эвклида – так же как и наша школьная геометрия, стоящая под ее влиянием – имеет дело с маленькими, удобными для обращения фигурами и телами, и, таким образом, от нее остались скрытыми трудности, возникающие при обращении с фигурами астрономических размеров и не всегда допускающие применение эвклидовой геометрии[89]. Иначе, пожалуй, тонкий аттический гений уже тогда сумел бы предугадать кое-что из проблемы неэвклидовой геометрии, так как возражения против известной аксиомы о параллельных линиях[90], сомнительная и неподдающаяся исправлению формулировка которой уже издавна создавала затруднения, близко подводили к решающему открытию. Поскольку для античного ума было само собой понятным рассмотрение исключительно близкого и малого, так же само собой понятно для нас рассмотрение бесконечного, выходящего за пределы видимого глазом. Все математические воззрения, изобретенные или заимствованные Западом, с полной неизбежностью были подчиняемы языку форм бесконечного, даже задолго до времени открытия дифференциального исчисления. Арабская алгебра, индийская тригонометрия, античная механика равно включались в анализ. Как раз самые «очевидные» положения элементарного счисления: например 2х2 = 4, с аналитической точки зрения становятся проблемами, разрешение которых достигнуто только путем выводов из учения о множестве, а в многих частностях не достигнуто еще до сего времени, что, без сомнения, в глазах Платона и его времени показалось бы безумием и признаком полного отсутствия математических способностей.

Можно в известном смысле трактовать геометрию алгебраически, или алгебру геометрически, т. е. устранять деятельность глаза или, наоборот, допускать его господство. К первому способу прибегли мы, ко второму греки. Архимед, касающийся в своем изящном вычислении спирали некоторых общих фактов, легших также в основу Лейбницевой методы определенного интеграла, тотчас же подчиняет свои приемы, кажущиеся при поверхностном наблюдении в высшей степени современными, стереометрическим принципам; индус в подобном же случае вполне естественным образом нашел бы тригонометрическую формулировку. (В настоящее время не представляется возможным установить, что из известной нам индийской математики является древнеиндийским, т. е. что возникло до Будды.)

13

Из основной противоположности античных и западных чисел вытекает столь же глубокая противоположность отношений в которых находятся друг к другу отдельные элементы каждого из этих комплексов. Взаимоотношение величин называется пропорцией, взаимоотношение отношений заключается в сущности функции. За пределами математики оба эти слова имеют глубокое значение для техники обоих соответствующих искусств – пластики и музыки. Если даже не принимать во внимание значение слова «пропорция» в применении к отдельной статуе, как раз наиболее типичные произведения античного искусства, статуя, рельеф и фрески, допускают увеличение или уменьшение масштаба, но слова эти не имеют никакого смысла в применении к музыке, искусству беспредельного. Достаточно вспомнить искусство гемм, сюжеты которого были уменьшениями пластики натуральной величины. С другой стороны, в области теории функций решающее значение имеет понятие трансформации групп, и всякий музыкант подтвердит, что аналогичные образования составляют существенную часть новейшего учения о композиции. Я ограничусь примером одной из наиболее тонких инструментальных форм XVIII в., а именно «tema con variazioni».

Всякая пропорция предполагает постоянство элементов, всякая трансформация – их изменчивость: достаточно сравнить теоремы о подобии у Эвклида, доказательство которых в действительности основано на наличии отношения 1:1, с современным их выводом при помощи круговых функций.

14

Конструкция – в широком смысле охватывающая все методы элементарной арифметики – есть альфа и омега античной математики: она равносильна установлению определенного и видимого объекта. Циркуль есть резец этого второго пластического искусства. Способ работы при изысканиях в области теории функций, ставящих себе целью не определенный результат, имеющий характер величины, а исследование общих формальных возможностей, можно обозначить как известный вид теории композиции, находящийся в близком сродстве с музыкальной композицией. Целый ряд понятий из области теории музыки можно было бы также прямо применить к аналитическим операциям физики – тональность, фразировка, хроматичность, а также другие – и вопрос, не сделаются ли благодаря этому многие отношения более удобообозримыми.

Всякая конструкция утверждает видимость, всякая операция отрицает ее, так как первая вырабатывает оптические данные, вторая же их разрушает. Таким образом, вскрывается дальнейшая противоположность обоих видов математических приемов: античная математика малых рассматривает конкретный отдельный случай, решает определенную задачу, выполняет единичную конструкцию. Математика бесконечного рассматривает целые классы формальных возможностей, группы функций, операций, уравнений, кривых, причем имеет в виду не определенный результат, но само протекание процесса. Около двухсот лет тому назад – факт, о котором почти не думают наши математики – возникла идея общей морфологии математических операций, которую и следует признать за сущность новой математики. В ней вскрывается общая широкая тенденция западного духа, становящаяся со временем все более ясной, – тенденция, являющаяся исключительным достоянием фаустовского духа и его культуры и не имеющая подобия в устремлениях других культур. Большинство вопросов, являющихся насущными проблемами нашей математики – соответственно квадратуре круга у греков, как-то: исследование критерия сходимости бесконечных рядов (Коши) или обращение эллиптических и общеалгебраических интегралов в многократные периодические функции (Абель, Гаусс), вероятно, показалось бы «древним», искавшим в качестве результатов определенных величин, остроумной и несколько причудливой забавой – суждение соответствующее также и теперешнему общепринятому мнению широких кругов. Нет ничего столь же непопулярного, как современная математика, и в этом есть также своя доля символики бесконечной дали, расстояния. Все великие произведения Запада, начиная с Данте до «Парсифаля», непопулярны, наоборот, все античные, начиная с Гомера до Пергамского алтаря, популярны в высшей степени.

15

Наконец, все содержание западного числового мышления объединяется в одной классической проблеме, являющейся ключом к трудноусвояемому понятию бесконечности – фаустовской бесконечности, отличной от бесконечности арабского и индийского мирочувствования. Речь идет о теории предела вообще, независимо от частных случаев, когда число рассматривается как бесконечный ряд, как кривая или функция. Этот предел является полной противоположностью античному, который до сих пор не назвали этим именем и который выражается в неподвижно ограниченной плоскости измеримой величины. До самого XVIII века эвклидовски-популярные предрассудки затемняли смысл принципа дифференциала. Как бы осторожно ни применять наиболее доступное понятие бесконечно малого, ему все остаются присущи какой-то момент античной константности, какая-то внешность величины, хотя Эвклид не признавал его и не мог признать таковой. Нуль есть постоянная величина, некоторое число в линейной непрерывности между 1 и -1; аналитическим исследованиям Эйлера во многом повредило то обстоятельство, что он – как и многие вслед за ним – считал бесконечно малые величины за нули. Только вполне разъясненное Коши понятие предела устранило этот остаток античного чувства чисел и сделало исчисление бесконечных вполне свободной от противоречий системой. Только переход от «бесконечно малых чисел» к тому, «что находится ниже предельного значения всякой возможной конечной величины», приводит к концепции изменяющегося числа, находящегося ниже любой отличной от нуля конечной величины и, следовательно, не имеющего в себе ни малейшего признака величины. Предел в этой окончательной формулировке вообще не представляет собой нечто такое, к чему совершается приближение. Он представляет собою само приближение – процесс, операцию. Это не состояние, а поведение. Здесь, в решающей проблеме западной математики неожиданно вскрывается, что наша душа предрасположена исторически