По идее Дж. фон Неймана машина – родитель представляется помещённой в содержащее компоненты ограниченное пространство, из которых состоят аналогичные машины. По инструкции, записанной на ленте, машина – родитель должна отбирать необходимые элементарные компоненты и строить из них потомка.
Чтобы понять существо этого предложения, необходимо чётко уяснить принцип блочной конструкции. Машины, отвечающие современным требованиям, имеют сравнительно простую конструкцию, ибо для их построения применяют заранее изготовленные блоки. Не меньшее значение имеет замечательный вывод известного физика, лауреата Нобелевской премии Джорджа П. Томсона, высказанный им в его проникновенной книге «Предвидимое будущее»: «Миру, в котором мы живём, присуща одна особенность столь общего и столь универсального характера, что она не привлекла к себе, по – видимому, должного внимания. Я назову её, за отсутствием лучшего определения, „принципом массового производства“. Это – тенденция природы к почти бесконечному повторению всех порождаемых ею существ. Нагляднее всего эта тенденция проявляется, видимо, в мире мельчайших объектов. Во вселенной существует меньше ста разновидностей атомов, а сами эти сто разновидностей состоят из очень малого числа (из двух или трёх) обычных, элементарных частиц – электронов, протонов и нейтронов. На этом уровне все индивидуумы, образующие множество объектов, идентичны. Примеры, подтверждающие это положение, могут быть найдены в мире как живой, так и неживой природы: дождевые капли, песчинки, частицы дыма, бактерий, клетки любого куска с виду однородной органической ткани. Всякое дерево покрыто летом большим, хотя, быть может, и не вполне одинаковым количеством листьев. Каждый лист состоит из множества сравнительно немногочисленных разновидностей клеток…
С моей точки зрения, эта множественность представляет собой самую замечательную особенность вселенной, какой она предстаёт перед нами. Внимательный наблюдатель обнаруживает это даже визуально, а прогресс в области разработки точных инструментов и в развитии научных познаний выявляет эту особенность уже с полной и поразительной очевидностью.
Это, безусловно, одно из основных явлений мира, которых не изменят никакие новые открытия. Атомизм в самом широком смысле этого понятия – массовое производство, осуществляемое природой, – представляет собой глубочайшую из научных истин» [Томсон Дж. П. Предвидимое будущее. М.: ИЛ, 1958. Стр. 35 – 37].
И в самом деле, элементарные логические ячейки, составляющие основу современных ЭВМ, знают только два сочетания: 1 и 0. А ведь ЭВМ способны управлять не только роботами, но и сложнейшим производством, а иной раз выигрывать в шахматы у гроссмейстеров, и все это на основе различных логических сочетаний все тех же элементарных ячеек.
Вот и ключ к решению задачи самовоспроизводства: машине – строителю нужно только умело собирать блоки элементарных логических ячеек и создавать потомство с большей памятью и другими перспективными характеристиками.
11. Конструирование роботов
Роботы – игрушки
На рис. 81 вы видите модель кибернетического краба, созданную юными техниками в пионерском лагере им. Вити Коробкова (Крымская обл.). Краб двигается на свет электрического фонаря или на солнечный свет, перемещаясь с помощью двух электродвигателей с редукторами, которые вращают колесо (такие узлы есть в комплекте многих детских электромеханических конструкторов). Поверх ходовой части на металлической плите собраны два узла зрения из радиокубов. Нос краба – отсек с батареями 3336 (для питания двигателей) и «Крона» (для питания устройства зрения) – отделяет один глаз краба от другого. Поэтому боковой свет попадает только в один глаз, и его реле включает электродвигатель, разворачивающий краба в сторону источника света. Как только свет попадает и во второй глаз, включается второй электродвигатель и краб движется прямо на источник света. Чтобы в глаза краба попадало больше света, его металлическая платформа установлена под углом 45° к горизонту. Третье колесо, поддерживающее платформу, свободно поворачивается при её поворотах.
Эту конструкцию можно усовершенствовать. Например, установить на крабе лампу, на свет которой реагировала бы система зрения другого краба. Эту игру можно назвать «электронной охотой». Крабы, снабжённые лампами, будут охотиться друг за другом, пока один не настигнет другого.
Такие же устройства зрения можно установить в фанерную модель собаки, и она, подобно крабу, будет двигаться на свет, лая и помахивая хвостом. Известно много других примеров простейших кибернетических автоматов, моделирующих поведение живых существ.
Наши модели, взаимодействуя с внешней средой, воспроизводят некоторые элементы поведения живых организмов. Внешняя среда воздействует на органы чувств живого организма. У автоматических же моделей роль чувств выполняют чувствительные элементы, способные реагировать на различные воздействия внешней среды. В качестве таких элементов служат фотоэлементы, микрофоны, чувствительные электромеханические реле, реагирующие на механические воздействия, и другие электронные приборы.
Кибернетическая игрушка с программным управлением
На рис. 82 изображён забавный щенок, который ходит, весело виляя хвостом, лает, поворачивая голову направо и налево, останавливается, озираясь по сторонам, и затем снова с лаем продолжает движение. Его сконструировал юный техник москвич Мясум Аляутдинов. Электронный блок модели представляет собой программное устройство из трёх реле времени. Одно реле подключает питание к двум другим на определённое время (около минуты), после чего модель останавливается. Два программных реле периодически останавливают модель, включая устройство лая, или переводят его в режим движения. Чтобы получить длительные задержки с эксиодными конденсаторами небольшой ёмкости, оба реле времени собраны на операционных усилителях.
При вращении шестерни 44 по часовой стрелке «плавающая» шестерня 39 перемещается вверх и зацепляется шестернёй 35 через промежуточную шестерню 34. Шестерня 35 вращает вал с кривошипом 36, и движение через тягу 6 передаётся голове 9. При этом раскрывается пасть и одновременно при растяжении сжатой пружины 33 устройство имитирует лай. Звучащим устройством служит механическая пищалка. Итак, собака лает, виляет хвостом, поворачивает в разные стороны голову.
Сложнее механическая часть игрушки. Она состоит из устройства, преобразующего с помощью кривошипно-шатунного механизма и промежуточных рычагов и тяг вращательное движение электродвигателя в возвратно-поступательные движения головы, лап и хвоста. Необходимый вращательный момент на валах, на которых укреплены шестерни механизма, обеспечивает реверсивный многоступенчатый редуктор. Для изменения направления вращения выходного вала достаточно изменить полярность источника питания электродвигателя.
Наглядное представление о работе механической части игрушки даёт её кинематическая схема (см. рис. 83).
При вращении шестерни 44 против часовой стрелки «плавающая» шестерня 39 перемещается вниз, зацепляется с шестернёй 38, которая, в свою очередь, передаёт движение на коленчатый вал 37. Этот вал, шар – нирно соединённый с передними лапами 1, заставляет их касаться пола, имитируя ходьбу. Задние лапы 25 передвигаются благодаря шарнирному соединению с передними через тяги 26. Во время ходьбы движется хвост 21 и поворачивается голова 9.
Тягу хвоста 21 приводит в движение шестерня 41, кривошип 43 и тяга 42, а тягу 5 головы – рычаг 3, прикреплённый к валу шестерни 44. Несущим элементом конструкции является шасси 27 (см. рис. 82), на котором установлены редуктор 30, электродвигатель 31 и все остальные детали. Они закрыты кожухом. Шасси и большая часть деталей механизма изготовлены из листовой стали толщиной 0,8 мм. К шасси вдоль ребра жёсткости в месте сгиба припаяна накладка. Тяги 6 и 26 изготовлены из стальной проволоки диаметром 1,5 и 2,5 мм соответственно. На концах всех тяг просверлены отверстия, в которые вставлены шплинты из проволоки. Большинство деталей конструкции фиксировано винтами М2.
Редуктор – самодельный, изготовлен из шестерён от старых игрушек. Ведомая шестерня 32 редуктора сцеплена с электродвигателем шестернёй диаметром 7 мм, насаженной на его вал. Боковые стенки редуктора изготовлены из листовой стали толщиной 1 мм. Их крепят тремя винтами М2,5. На винты между пластинами надевают металлические втулки с наружным диаметром 4,5 мм и длиной 15 мм. Кривошипы, надеваемые на валы, сделаны из латуни (или из дюралюминия).
Батарею 3336, питающую электродвигатель, крепят на шасси двумя скобами 20 (см. рис. 82), а монтажные платы 16, 18 дешифратора – на пластмассовых стойках 17 и 19. В игрушке используется электродвигатель ДИ1 – 3 14МО 390 001 ТУ. По сравнению с другими аналогичными двигателями он обладает повышенной мощностью, высоким КПД, низким уровнем акустических шумов и радиопомех.
Пищалка 10 сделана из плотного картона и оклеена калькой. Внутри закреплена распорная пружина из стальной проволоки диаметром 0,5 мм. Звук издаёт металлическая пластина толщиной около 0,08 мм, вибрирующая под действием струи воздуха, входящего в полость пищалки. Крепят её к стойке 11, припаянной к нижней части головы. Голова 9 и кожух – из папье-маше (обрезки хлопчатобумажной ткани, пропитанные казеиновым клеем).
Электромеханическая часть игрушки сложна в изготовлении. Но трудности её изготовления компенсируются радостью, которую вы получите от общения с этой весёлой игрушкой.
Человекоподобные роботы
Модель простейшего человекоподобного робота с программным управлением показана на рис. 84. Высота робота около 70 см, и, хотя вид у него внушительный, он сделан из тонкого картона, покрыт металлизированной бумагой и окрашен серебристо – голубой краской. В ступнях робота размещены батареи и электродвигатели, перемещающие робота на обрезиненных колёсах. Как сконструировать ноги робота, чтобы он шагал, поясняет рис. 85.