1 dB = 10·lg(A/A0)
В этой книге мы всегда будем иметь в виду «амплитудные» децибелы — например, коэффициент усиления звукового усилителя, равный 20 dB, будет означать, что напряжение на выходе будет в 10 раз больше напряжения на входе: Uвых/Uвх= 10db/20 (для «мощностных» децибел величина 20 означает изменение мощности сигнала в 100 раз).
Децибелы удобно использовать для характеристики изменения величин, меняющихся по степенному закону. Их широко используют при расчетах фильтров, анализе частотных и амплитудных характеристик операционных усилителей (ОУ).
График степенной функции, которая быстро возрастает или падает в обычных координатах, в широком диапазоне значений практически невозможно изобразить, а при использовании децибел он будет выглядеть прямой линией (это часто встречающиеся вам графики, где по осям отложены величины, возрастающие не линейно, а в геометрической прогрессии: 1, 10, 100, 1000…). В акустике звуковое давление практически всегда измеряют в «амплитудных» децибелах (относительно порога слышимости) — это связано с тем, что наше ухо реагирует именно на отношение громкостей, а не их абсолютное возрастание. Так, болевой порог звука, определяемый в 120 дБ, означает интенсивность звука в миллион раз выше порога слышимости.
Если отношение величин больше 1, то величина в децибелах будет положительной, если меньше — отрицательной. Для перевода «амплитудных» децибел в обычные относительные единицы и обратно необязательно всегда использовать указанную ранее формулу, достаточно просто запомнить несколько приблизительно выполняющихся соотношений:
□ З дБ соответствует увеличению/уменьшению на треть;
□ 6 дБ соответствует отношению в 2 раза;
□ 10 дБ соответствует отношению в 3 раза;
□ 20 дБ соответствует отношению в 10 раз.
Руководствуясь этими соотношениями, легко перевести любую величину, выраженную в децибелах: например, 73 дБ есть 20 + 20 + 20 + 10 + 3 дБ, что соответствует отношению в 10·10·10·3·1,33 = 4000 раз. Собственный коэффициент микросхемы звукового усилителя TDA2030 (см. главу 11) равен 30 000, т. е. 3·104, или 10 + 4·20 = 90 дБ, максимальный рекомендуемый коэффициент усиления усилителя на ее основе, согласно техническому описанию, равен 46 = 20 + 20 + 6 дБ, что соответствует усилению в 200 раз. Коэффициент ослабления синфазного сигнала (КООС), о котором речь пойдет в главе 12, также чаще всего измеряют в децибелах: так, его величина, равная -60 (= -3·20) дБ, означает, что синфазный сигнал ослабляется в 1000 раз. Крутизна характеристик простейших RC-фильтров низкой и высокой частоты из главы 5 равна, соответственно, — 6 и +6 дБ на октаву, что означает уменьшение/увеличение сигнала в 2 раза при изменении частоты также в 2 раза.
ГЛАВА 5Электроника без полупроводников
Резисторы, конденсаторы и схемы на их основе
Глаза миледи метали такие молнии, что, хотя лорд Винтер был мужчина и стоял вооруженный перед беззащитной женщиной, он почувствовал, как в душе его зашевелился страх.
А.Дюма. Три мушкетера
Резисторы и конденсаторы — основа основ электроники. Эти элементы вместе с индуктивностями относятся к разряду так называемых линейных, потому что ток и напряжение в них зависят друг от друга по линейному закону и образуют группу пассивных элементов. Диоды, транзисторы и прочие нелинейные компоненты относят к активным элементам. Эти названия произошли от того, что эквивалентные схемы нелинейных элементов не могут обойтись без включения в них источников тока или напряжения (активных составляющих). Так как практически ни одна схема без резисторов и конденсаторов не обходится, то мы рассмотрим их свойства подробно.
Резистор — самый распространенный компонент электронных схем. Несмотря на его простоту (в самом деле — это всего-навсего кусок материала с определенным сопротивлением), не существует практически ни одной работоспособной схемы, в которой бы не присутствовали резисторы в том или ином виде. Даже если вы их и специально не ставили, они все равно есть. Скажем, в простейшем случае настольной лампы или карманного фонарика, где вся схема состоит из источника питания (сети или батарейки), выключателя и лампочки, резисторы неявно присутствуют — это и сама лампочка, которая светится, нагреваясь за счет своего высокого сопротивления, и сопротивление проводов, и внутреннее сопротивление источника питания. Все эти элементы могут быть представлены на схеме, как резисторы. Причем последние два элемента из перечисленных только мешают, забирая на себя часть полезной мощности, но избавиться от них невозможно, они присутствуют всегда и везде, поэтому их нужно учитывать и стараться свести их влияние к минимуму.
Если вы вернетесь к рис. 1.4 в главе 1, то при внимательном его рассмотрении поймете, что кроме указанных на схеме резисторов R1 и R2 в деле участвуют еще как минимум четыре резистора: сопротивление проводов, сопротивление амперметра, сопротивление вольтметра и внутреннее сопротивление источника питания. Для простоты влияние паразитных резисторов обычно игнорируют, считая, что они оказывают исчезающе малое влияние на работу схемы, однако это не всегда так.
Ко всем этим тонкостям мы еще будем возвращаться не раз, а пока рассмотрим резисторы, как таковые — т. е. фабрично выпускаемые компоненты электронных схем под таким названием. Они встречаются разных типов, размеров и конструкций. Наиболее часто употребляемые типы — металлопленочные (металлодиэлектрические) резисторы. Наиболее распространены импортные металлопленочные резисторы (MFR), аналоги отечественных МЛТ, которые тоже довольно часто встречаются на рынках до сих пор. Отечественные МЛТ старых выпусков имеют обычно красный или розовый цвет (хотя иногда встречаются и другие цвета, например зеленый), а номинальное значение сопротивления написано прямо на них, в то время как современные резисторы маркируются международным цветным кодом. Есть и другие типы резисторов общего назначения. По функциональным свойствам все они практически идентичны.
В приложении 1 приводится таблица цветных кодов для маркировки резисторов, но сам я практически этим кодом не пользуюсь. Читать цветной код неопытному человеку — мука мученическая, учитывая особенно, что понятие, скажем, «оранжевый» очень часто трактуется производителями весьма вольно, и отличить его от «желтого» на, скажем, темно-синем фоне может только человек с большим опытом. Проще и быстрее просто измерить сопротивление мультиметром. Таблицы рядов номинального сопротивления в зависимости от допустимого разброса значений — допуска, также приведенные в приложении 1, нужно пояснить.
У непосвященных может возникнуть вопрос: почему резисторы имеют такие странные номинальные значения: 4,3 кОм или 5,1 кОм? Почему нельзя привязать номиналы к привычным для нас «круглым» значениям: 4 или 5 кОм? Все объясняется очень просто.
Возьмем, например, широко распространенные резисторы с пятипроцентным допуском и посчитаем резистор 1 кОм за основу ряда. Какой следующий номинал взять? Так как допуск равен 5 %, то в большой партии резисторов могут встретиться сопротивления во всем диапазоне: от 0,95 до 1,05 кОм. Мы, естественно, хотим, чтобы можно было бы (хотя бы теоретически) найти резистор с любым значением сопротивления. Поэтому следующий номинал, который мы выбираем, будет равен 1,1 кОм — т. к. его допуск тоже 5 %, то минимальное допустимое значение для него — 1,045 кОм и, как мы видим, диапазоны перекрываются. Точно так же рассчитываются остальные номиналы, вплоть до 9,1 кОм, возможные значения которого перекрываются с допусками от первого значения из следующей декады — 10 кОм.
Чем строже допуск, тем больше сопротивлений в ряду — если мы встретим резистор с номинальным сопротивлением 2,43 кОм, то можем быть уверены, что допуск у него не хуже 1 %. Конечно, для малых допусков (вроде 0,1 %) ряд получился бы слишком большим, потому его ограничивают, и допуски там уже не пересекаются.
Кстати, забегая вперед, отметим, что те же ряды значений справедливы и для емкости конденсаторов.
Осталось научиться вычислять значения сопротивления для всего диапазона выпускаемых промышленностью резисторов — для обычных металлодиэлектрических это значения от 1 Ом до 10 МОм. Как вы уже догадались, в каждой декаде номиналы получаются из табличного ряда значений путем умножения на соответствующую степень десяти. При этом для краткости часто используют условные обозначения для каждого диапазона: R (или Е) — обозначает омы, к — килоомы, М — мегомы. Эти буквы могут использоваться вместо десятичной точки: так, запись 1к2 есть то же самое, что и 1,2 кОм, a 3R3 (или 3Е3) — то же самое, что 3,3 Ом. При обозначении на схемах целые омы в большинстве случаев вообще опускают — именно так мы будем поступать в этой книге, так что имейте в виду: запись «360» на схеме означает просто 360 Ом.
Хотя я не рекомендую иметь дело в домашних условиях с компонентами поверхностного монтажа (как их еще называют, чип-компонентами или SMD-компонентами), но рано или поздно они вам, безусловно, могут встретиться. Для SMD-резисторов принята другая система маркировки. Самые мелкие SMD-резисторы (допустимой мощностью 0,063 Вт) не маркируются вообще. Наиболее часто встречающиеся SMD-резисторы с допуском 2, 5 и 10 % всех типоразмеров маркируются тремя цифрами. Первые две цифры обозначают мантиссу, а последняя цифра — показатель степени по основанию 10 для определения номинала в омах. Для обозначения десятичной точки к значащим цифрам может добавляться буква R. Например, маркировка 242 означает, что чип-резистор имеет номинал 24х102Ом = 2,4 кОм.
Забегая вперед, заметим, что на похожих принципах основаны обозначения емкости малогабаритных конденсаторов (и SMD, и обычных), только за основу шкалы там приняты пикофарады (1012 Ф), так что надпись, скажем, 474 расшифровывается как 47·10