Занимательная электроника — страница 37 из 128

Остальные обмотки — вторичные, их можно соединять между собой в любой комбинации. Обмотки имеют начало и конец. Для суммирования напряжений обмоток надо соединять конец одной обмотки с началом другой. Смысл понятий начала и конца обмоток прост — где начинали мотать обмотку, там и начало. Если намотать следующую обмотку в том же направлении (а так всегда и поступают), то у нее начало будет с той же стороны, что и у первой. Если это фабричный трансформатор, и выводы у него нумерованы, то нечетные выводы принимаются за начала обмоток, а четные — за концы, т. е. при соединении двух обмоток с нумерацией выводов 1–2 и 5–6 для сложения напряжений нужно соединить вывод 2 первой обмотки с выводом 5 второй (или вывод 1 первой с выводом 6 второй), а оставшиеся выводы 1–6 (или 5–2) будут, соответственно, началом и концом объединенной обмотки. Для серийно выпускающихся трансформаторов в торгующих ими организациях имеются справочники по типовым разновидностям с указанием характеристик обмоток и нумерации их выводов.


Расчет сетевого трансформатора

Я надеюсь, что вам никогда не придется самим мотать сетевые трансформаторы, но все же приведу полуэмпирическую, но проверенную практикой, методику для их расчета, т. к. некоторые из формул могут вам пригодиться для доработки серийных трансформаторов и определения характеристик трансформаторов, имеющихся в наличии. Кроме того, знание закономерностей расчета способствует правильному выбору при их приобретении.

Главное соотношение (можно назвать это законом трансформатора):

U1/U2 = n1/n2 (1)

где:

 U1 — напряжение первичной обмотки;

U2 — напряжение вторичной обмотки;

n1 — число витков первичной обмотки;

n2 — число витков вторичной обмотки.

Как видите, все необычайно просто. Если, скажем, первичная обмотка имеет 220 витков (это должен быть довольно мощный трансформатор, у маломощных число витков может составлять несколько тысяч), а вторичная — 22 витка, то при подключении к сети 220 В на вторичной обмотке будет 22 В. Токи находятся в обратном соотношении — если ток вторичной обмотки составляет 1 А, то первичная обмотка будет потреблять от сети 100 мА. Если вторичных обмоток несколько, то для определения потребления тока от сети их токи нужно пересчитать на первичную обмотку в отдельности (количество витков при этом знать необязательно, достаточно только напряжения), а затем сложить. Можно пойти и другим путем — суммировать мощности, потребляемые вторичными обмотками (которые равны произведениям токов на напряжения), а затем поделить полученную сумму на 220 — получим ток в первичной обмотке.

Кстати, из этого закона вытекает простой метод определения количества витков в обмотках готового трансформатора, если это зачем-то нужно — намотайте поверх имеющихся обмоток несколько витков любого провода, включите трансформатор и измерьте напряжение на этой импровизированной обмотке. Поделив количество намотанных витков на полученное значение напряжения, вы получите величину количества витков на один вольт, которая едина для всех обмоток, а далее пересчитать полученный результат уже не составляет трудностей.

При выборе напряжений вторичных обмоток учтите, что их нужно выбирать с запасом (это относится и к покупным трансформаторам) — под нагрузкой напряжение садится, и это просаживание тем больше, чем меньше мощность трансформатора. Поэтому, если вам задано минимально допустимое напряжение 7 В — выбирайте трансформатор с 9-10-вольтовой обмоткой, не ошибетесь.

Итак, сформулируем задачу: допустим, необходимо иметь трансформатор с двумя вторичными обмотками, рассчитанными на напряжение 27 В и ток 200 мА каждая, и еще одной обмоткой, рассчитанной на напряжение 9 В и ток до 3 А. Подсчитаем суммарную мощность: 27·0,2–2 + 9·3 = 37,8 Вт, округляем до 40 Вт. Ток в первичной обмотке составит 40/220 = 0,18 А, округляем до 0,2 А. Теперь у нас есть все исходные данные.

Сначала определяем сечение магнитопровода в см2 (для Ш-образных трансформаторов это есть сечение центрального стержня, на котором находится катушка с обмотками, для тороидального — просто поперечное сечение тора). Это делается по формуле:

S = 1,15·√P, (2)

где S — сечение в см2; Р — мощность в Вт. Получаем 7,3 см2 — уже можно выбирать магнитопровод. Они стандартизированы, так что выбираем из справочника подходящий с округлением в большую сторону. По этой формуле также всегда можно определить неизвестную мощность имеющегося в наличии трансформатора — достаточно измерить сечение его магнитопровода.

Затем нужно подсчитать требующееся при такой мощности количество витков первичной обмотки:

n1 = 50·U1/S, (3)

где n1 — число витков, U1 — напряжение (220 В), S— рассчитанное ранее сечение в см2. Получаем 275 витков. Рассчитать теперь количество витков вторичных обмоток — дело техники, только не забывайте всегда округлять в большую сторону.

И, наконец, рассчитываем необходимый диаметр провода в мм2 для каждой обмотки:

di= 0,8·√Ii, (4)

где di— диаметр провода в i-й обмотке, а Ii — ток в этой обмотке. Получаем для первичной обмотки диаметр 0,36, для 27-вольтовых также 0,36, а для 9-вольтовой — 1,4 мм.

Все, расчет закончен. Формулу (4) стоит запомнить, т. к. она может пригодиться, если придется доматывать витки к имеющимся в наличии трансформаторам — сначала по приведенной ранее методике определяется количество витков на вольт, из чего определяется необходимое количество витков, а затем по формуле (4) — нужный диаметр провода.

Учтите, что закон трансформации (1) справедлив для всех видов трансформаторов, а вот все остальные соотношения, за исключением разве что (4), годятся только для расчета сетевых трансформаторов, работающих на частоте 50 Гц. Ни для каких других трансформаторов (согласующих с ферритовыми сердечниками) эта методика не действует.

Ну, а теперь перейдем к более интересным вещам.


Простейший нестабилизированный однополярный источник питания

Схема простейшего источника питания приведена на рис. 9.6. Именно по такой схеме устроены почти все распространенные ныне блоки питания, встроенные в сетевую вилку. Иногда в них вторичная обмотка имеет несколько отводов и присутствует ползунковый переключатель, который коммутирует эти отводы, меняя выходное напряжение. Так как эти блоки весьма дешевы, то в случае, когда вам не требуется большой мощности, спокойно можно покупать такой блок, разбирать его и встраивать в вашу аппаратуру (или даже не встраивать — хотя, на мой вкус, громоздкие надолбы на розетках отнюдь не украшают интерьер, все время хотят вывалиться и к тому же не во всякую розетку влезают). Нужно только обратить внимание на допустимый ток нагрузки, который указан на корпусе блока. Что касается номинального напряжения, то этот вопрос мы сейчас рассмотрим.



Рис. 9.6.Простейший нестабилизированный однополярный источник питания


Как работает эта схема? Здесь переменный синусоидальный ток со вторичной обмотки трансформатора (II) подается на конструкцию из четырех диодов, которая называется диодным мостом и представляет собой простейший двухполупериодный выпрямитель (есть и другие способы двухполупериодного выпрямления — см; далее рис. 9.14 и пояснения к нему). В мосте могут быть использованы любые типы выпрямительных диодов, лишь бы их предельно допустимый ток был не меньше необходимого (для указанных на схеме диодов 1N4001 это 1 А), а предельно допустимое напряжение — не меньше половины амплитудного значения входного переменного напряжения (т. к. в данном случае это всего 7 В, то здесь этому требованию удовлетворяют вообще все выпрямительные диоды на свете). Такие мосты выпускаются уже в сборе, в одном корпусе, на котором иногда даже нарисовано, куда подключать переменное и откуда снимать постоянное напряжения. Их, конечно, тоже можно и нужно использовать.

Проследим за работой моста. Предположим, что на верхнем по схеме выводе вторичной обмотки в данный момент переменное напряжение, поступающее с обмотки, больше, чем на нижнем. Тогда ток в нагрузку (она обозначена пунктиром) потечет через правый верхний диод моста, а возвратится в обмотку через левый нижний. Полярность на нагрузке, как видим, соблюдается. В следующем полупериоде, когда на верхнем выводе обмотки напряжение меньше, чем на нижнем, ток через нагрузку потечет, наоборот, через левый верхний диод и возвратится через правый нижний. Как видим, полярность опять соблюдается.

Отсюда и название такого выпрямителя — двухполупериодный, т. е. он работает во время обоих полупериодов переменного тока. Форма напряжения на выходе такого моста (в отсутствие конденсатора) соответствует пульсирующему напряжению, показанному на рис. 4.5, а. Естественно, такое пульсирующее напряжение нас не устраивает — мы хотим иметь настоящее постоянное напряжение без пульсаций, потому в схеме присутствует сглаживающий (фильтрующий) конденсатор, который вместе с выходным активным сопротивлением трансформатора и сопротивлением диодов представляет собой не что иное, как известный нам по главе 5 интегрирующий фильтр низкой частоты. Все высокие частоты отфильтровываются, а на выходе получается ровное постоянное напряжение. К сожалению, такая идиллия имеет место только в отсутствие нагрузки, к чему мы вернемся чуть далее, а пока попробуем определить, какова величина этого постоянного напряжения на выходе фильтра.

В отсутствие нагрузки конденсатор с первых же полупериодов после включения питания заряжается до амплитудного значения пульсирующего напряжения, которое равно амплитудному значению напряжения на вторичной обмотке за вычетом падения напряжения на двух диодах, стоящих на пути тока. Так как в установившемся режиме через эти диоды ток весьма мал (только для подпитки собственных токов утечки конденсатора), то и падение напряжения на них мало и в сумме составляет менее 1 В. Амплитудное значение напряжения на вторичной обмотке равно 10