Обычно по каким-то причинам идеала по образцу рис. 9.20 достичь не получается. В этом случае помогут установленные как можно ближе к выводу питания так называемые развязывающие конденсаторы (они как раз и показаны на рис. 9.20). Причем если это отдельная плата, то их ставят на ней прямо около входного разъема, ни в коем случае не в дальнем конце платы! Кроме того, во всех случаях провода и проводники питания на плате должны быть как можно толще — если провод тонкий, то на нем самом за счет протекающего тока происходит падение напряжения, и разные потребители оказываются под разными потенциалами — как по «земле», так и по питанию.
* * *
Заметки на полях
Кстати, о «земле» — почему я ее все время заключаю в кавычки? Схемотехническую «землю» самое правильное называть общим проводом, просто термин прижился, да и звучит короче. Дело в том, что в электротехнике существует совершенно определенное понятие «земли» — когда нечто находится под потенциалом земной поверхности, который принимается за истинный ноль напряжения. Под таким потенциалом по понятным причинам находятся, например, металлические водопроводные трубы или батареи отопления. Есть еще понятие нулевого провода (один из проводов в вашей домашней розетке всегда нулевой, второй называется фазным) — он теоретически находится тоже под потенциалом земли, но практически соединяется (возможно) с истинной землей только где-то на электростанции, а за счет несбалансированности протекающего по различным фазам тока потенциал его может «гулять», и довольно сильно. Поэтому правильно организованная бытовая электросеть всегда должна включать в себя третий провод, который есть истинное заземление. Если у вас такого третьего провода нет (печально, но в нашей стране до сих пор строили именно так, и только в последние годы положение начинает выправляться), то его можно организовать путем присоединения к металлической водопроводной трубе (СНиПы это допускают). Но это не только неудобно (представляете, сколько проводов придется растаскивать по всей квартире?), но иногда и опасно — в случае попадания фазного напряжения на такое заземление, до тех пор, пока сработает предохранитель, сопротивления между трубой и землей вполне может хватить, чтобы основательно тряхнуть кого-нибудь, кто будет в соседней квартире в этот момент мыть руки под краном.
* * *
На рис. 9.21, а показана схема развязывающего фильтра для маломощной нагрузки в пределах одного электронного узла. Это может быть входной каскад усиления микрофонного усилителя, который особо чувствителен к качеству питания, и его требуется развязать от следующих более мощных каскадов. На рис. 9.21, б показана правильная организация питания с такими фильтрами для быстродействующих или прецизионных измерительных усилителей — в частности, в измерительных схемах, о которых мы будем говорить в следующих главах.
Рис. 9.21.Разводка питания:
а — схема разделения нагрузок с помощью развязывающего фильтра;
б — организация питания для быстродействующих и прецизионных усилителей
ГЛАВА 10Тяжеловесы
Устройства для управления мощной нагрузкой
— Что вы делаете? — с удивлением воскликнула миледи.
— Положите мне руки на шею и не бойтесь ничего.
— Но из-за меня вы потеряете равновесие, и оба мы упадем и разобьемся.
А. Дюма. Три мушкетера
Многие практические задачи состоят в том, чтобы маломощное управляющее устройство, например простой переменный резистор или схема управления, построенная на логических или аналоговых микросхемах, могло бы управлять мощной нагрузкой, как правило, работающей от бытовой электрической сети. Это одна из тех областей техники, где за последние полвека электроника совершила настоящий переворот.
Представьте себе работу, скажем, осветителя в театре еще в пятидесятые годы XX века. Для плавного регулирования яркости прожектора тогда использовался последовательно включенный реостат — проще говоря, регулирование осуществлялось по схеме, приведенной на рис. 1.4. Более экономичный, но и более дорогой и громоздкий вариант, — ставить на каждый прожектор по регулируемому автотрансформатору с ползунком, управляемым вручную. Иногда в таких автотрансформаторах для дистанционного вращения ползунка приспосабливали моторчик, и вся система управления освещением с жужжащими трансформаторами, завывающими моторчиками и клацающими реле-пускателями начинала напоминать небольшой цех. То ли дело сейчас, когда осветитель сидит за клавиатурой вроде компьютерной (а иногда и просто за компьютерной) и управляет этим хозяйством легкими движениями пальцев. А нередко — как в массовых театрализованных представлениях — человек оказывается вообще не нужен, система управляется компьютером по заранее заданной программе. Все это стало возможным только лишь с появлением электронных устройств управления мощными нагрузками.
В главе 9 мы уже упоминали о том, что электронные устройства ни в коем случае нельзя строить по бестрансформаторной схеме — так, чтобы органы управления были напрямую связаны с сетью. При построении схем, управляющих сетевой нагрузкой, возникает непреодолимое искушение избавиться от трансформаторов питания и последующих устройств сопряжения — в самом деле, электричество в конечном счете одно и то же, так, спрашивается, зачем возиться? Но не поленимся повторить: поступать так не следует, потому что это опасно для жизни. И не только вашей жизни, которая подвергнется опасности при отладке подобных устройств, но и для жизни тех, кто будет вашими устройствами пользоваться. Тем не менее, здесь вы найдете некоторые исключения из этого правила — они касаются случая, когда управление сетевой нагрузкой осуществляется в автоматическом режиме, и доступ людей к элементам схемы во время ее работы исключен.
Самая простая схема управления мощной нагрузкой — релейная. Она применима в тех случаях, когда нагрузку нужно просто включать и выключать. Мы не будем подробно останавливаться на этом случае, т. к. о реле достаточно сказано в главе 7.
Однако отметим один существенный момент, о котором мы ранее не упоминали, — дело в том, что при релейном управлении сетевая нагрузка может отключаться и включаться, естественно, в произвольный момент времени. В том числе, этот момент может попадать и на самый пик переменного напряжения, когда ток через нагрузку максимален. Разрыв — или соединение — цепи с большим током, как мы уже знаем (см. главы 5 и 7), приводит к разного рода неприятностям. Во-первых, это искрение на контактах из-за выброса напряжения, что ведет к их повышенному износу, во-вторых, и в-главных, это создает очень мощные помехи, причем как другим потребителям в той же сети, так и электромагнитные помехи, распространяющиеся в пространстве. В моей практике был случай, когда включение мощного двигателя станка через пускатель приводило к тому, что в микроконтроллере, установленном в блоке управления на расстоянии пяти метров от станка, стиралась память программ! И это несмотря на то, что все стандартные меры по защите от помех по питанию были приняты.
Чтобы избежать такой ситуации, для коммутации мощной нагрузки лучше применять не обычные электромагнитные реле или пускатели, а оптоэлектронные. В них часто встроен так называемый zero-детектор — устройство, которое при получении команды на отключение или включение дожидается ближайшего момента, когда переменное напряжение переходит через ноль, и только тогда выполняет команду.
А теперь перейдем к более интересным вещам — к плавному регулированию мощности в нагрузке. Мы будем это делать, управляя действующим значением напряжения, которое на нее поступает.
Для этой цели нам придется применить один электронный прибор, который мы до сих пор не рассматривали, — тиристор, представляющий собой управляемый диод и соединяющий в себе свойства диода и транзистора. По схеме включения тиристор несколько напоминает транзистор в, ключевом режиме — у него тоже три вывода, которые работают аналогично соответствующим выводам транзистора (рис. 10.1, а).
В обычном состоянии тиристор заперт и представляет собой бесконечное сопротивление, а для его открывания достаточно подать напряжение на управляющий электрод — аналог базы у транзистора. Разница между тиристором и транзистором заключается в том, что для удержания транзистора в открытом состоянии через базу нужно все время гнать управляющий ток, а тиристору для открывания достаточно короткого импульса.
Величина тока через управляющий электрод составляет несколько единиц или дeсятков миллиампер в зависимости от мощности тиристора — для очень мощных приборов она может составлять единицы ампер (причем в ряде случаев ограничительный резистор можно не ставить — на схеме рис. 10.1, а он показан пунктиром). При этом напряжение должно достигать определенной величины — амплитуда управляющих импульсов для тиристоров средней мощности (рассчитанных на токи порядка 3-10 А) должна составлять примерно 5-10 В, а длительность его может не превышать 0,05 мс.
В отсутствие открывающего импульса тиристор все равно можно открыть, если подать на анод достаточно высокое напряжение — ток через управляющий электрод всего лишь снижает это открывающее анодное напряжение практически до нуля (но при этом управляющий импульс также должен иметь напряжение не ниже некоторого порога). Существует даже отдельный класс приборов под названием динисторы, представляющие собой тиристоры без управляющего электрода — они открываются при превышении анодным напряжением определенной величины, которая обычно составляет несколько десятков вольт. Тиристоры могут также открываться самопроизвольно, если анодное напряжение нарастает слишком быстро (со скоростью порядка 10 В/мкс и более). Во избежание этого в схемах на тиристорах следует шунтировать промежуток катод-управляющий электрод резистором (на схеме рис. 10.1,