а не показан). В настоящее время выпускаются специальные тиристоры и симисторы (о них рассказано далее), лишенные этого недостатка и предназначенные для работы в импульсных цепях.
Рис. 10.1.Схемы включения тиристоров и симисторов:
а —основная схема включения тиристора (1 — управляющий электрод; 2 — анод; 3 — катод);
б — включение симистора
Как и все диоды, тиристоры выдерживают большие перегрузки по току при условии, что они кратковременны. Во включенном состоянии тиристор ведет себя, как обычный диод, а закроется только тогда, когда ток через него (именно через него, в цепи анод-катод, а не по управляющему переходу) снизится до нуля. Если использовать его в цепи переменного тока, то это произойдет почти сразу, в конце ближайшего полу периода, при переходе напряжения через ноль. А вот в цепи постоянного тока тиристор сам не отключится, пока через него идет ток. Вообще-то, тиристор можно закрыть и подачей на управляющий электрод импульса противоположной полярности, но практически этим никто не пользуется (и возможность эта для обычных тиристоров относится к числу недокументированных), потому что и напряжение, и ток такого импульса должны быть сравнимы с напряжением и током в силовой цепи анод-катод.
Одиночный тиристор может обеспечить регулирование только положительного напряжения. В сети переменного тока в открытом состоянии он будет работать, как диод, отрезая отрицательную полуволну. Чтобы регулировать переменное напряжение в течение обоих полупериодов, нужен еще один тиристор, включенный наоборот. Так как тиристоры во всем, кроме управления, ведут себя подобно диодам, их можно включать встречно-параллельно. Для обычных диодов такое включение применяется только в схемах, подобных показанной на рис. 7.5, — они будут всегда открыты, так что, если не обращать внимания на падение напряжения в 0,6 В, при включении последовательно с нагрузкой такая схема просто ничего не делает.
Иное дело тиристоры — если на управляющие электроды ничего не подавать, то нагрузка будет отключена, если же подавать управляющие импульсы в нужной фазе и полярности относительно питающего напряжения, то они будут открываться и подключать нагрузку.
Симметричные тиристоры, или симисторы (рис. 10.1, б), естественно, выпускаются и отдельно. На западный манер симистор называется триаком. В симисторе имеется один управляющий электрод, причем в общем случае знак управляющего напряжения должен совпадать с полярностью на аноде. Популярные в нашей стране симисторы КУ208 при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном — импульсами только отрицательной полярности.
На осциллограммах (рис. 10.2) перед нами пример управления мощностью в нагрузке с помощью пары встречно-параллельно включенных тиристоров или симистора.
В начале каждого полупериода тиристор закрыт, управляющий импульс подается только через промежуток времени, равный трети длительности этого полупериода (т. е. со сдвигом фаз, равным π/3 относительно напряжения питания), и тогда тиристор открывается. Закрывается он, как уже говорилось, автоматически в момент перехода питающего напряжения через ноль. В результате напряжение на нагрузке будет иметь необычный вид, показанный на графике (см. рис. 10.2 внизу).
Рис. 10.2.Графики напряжения в схеме фазового управления с помощью тиристоров или симистора
Каково будет действующее значение напряжения?
Ясно, что оно будет меньше, чем в отсутствие тиристора, — или чем в случае, если бы управляющий импульс подавался в самом начале периода. Если же, наоборот, подавать управляющий импульс в самом конце, то действующее значение будет близко к нулю. Таким образом, сдвигая фазу управляющих импульсов, мы можем плавно менять мощность в нагрузке с достаточно высоким КПД.
А можно ли вычислить, чему будет равно действующее значение во всех этих случаях? Обычно такие расчеты не требуются, но в некоторых случаях, как мы увидим далее, полезно эту величину знать, т. к. стандартным цифровым мультиметром измерить ее невозможно — по причинам, указанным в главе 4, он покажет для напряжения такой формы все, что угодно, только не истинную величину. Для того чтобы рассчитать величину действующего значения для разных величин сдвига фазы, нужно взять интеграл от квадрата мгновенного значения напряжения в течение всего полупериода. Полученная в результате формула будет выглядеть так:
где:
□Uд— действующее значение напряжения на нагрузке;
□Uа— амплитудное значение питающего напряжения;
□ t — определяется по формуле f = π — φ, если сдвиг фазы φвыражать в радианах, или по формуле t = π(180 — φ)/180, если сдвиг фазы φ выражать в градусах.
При сдвиге фазы больше, чем половина периода (т. е. φ>π/2), полезно знать также максимальное значение напряжения на нагрузке Uмах, потому что от этого иногда зависит выбор элементов (при сдвиге фазы меньше половины периода максимальное значение попросту равно амплитудному значению питающего напряжения).
Его можно рассчитать по простой формуле: Uмах = = Uа·sin(φ).
В табл. 10.1 приведены результаты расчета по этим формулам для синусоидального напряжения 220 В. В последней колонке таблицы указаны величины мощности, которая будет выделяться в нагрузке, в процентах от максимальной мощности, которая выделялась бы при прямом включении нагрузки в сеть или, что то же самое, при сдвиге фазы управляющего импульса, равной нулю.
Анализ данных таблицы приводит нас к довольно интересным выводам. Зависимость действующего значения напряжения и мощности в нагрузке практически не меняется по сравнению с максимальной вплоть до сдвига фаз, равного 30° (в радианах π/6 или примерно 0,5) — помните из школьной тригонометрии правило: «синусы малых углов примерно равны самому углу»? Это оно и действует. Дальше значения мощности очень быстро падают вплоть до 150–160 градусов, когда мощность становится уже исчезающе малой — но обратите внимание на величину амплитудного значения! При сдвиге фаз в 160 градусов, когда мощности практически никакой уже нет, амплитудное значение все еще равно аж целых 106 В — такое напряжение вполне способно вывести из строя, скажем, маломощные диоды, у которых допустимое обратное напряжение часто не превышает нескольких десятков вольт.
Самый важный вывод, который следует из анализа данных таблицы, — изменение мощности в нагрузке в зависимости от угла сдвига фазы происходит нелинейно. По этой причине при проектировании устройств регулирования не имеет смысла начинать регулировку с малых углов сдвига фаз — реально ничего меняться не будет, и значительная часть хода регулировочного элемента будет холостой, практические изменения начнутся с углов в 30° и более.
Закончив на этом со скучной теорией, перейдем к практическим схемам.
Такое устройство будет незаменимо, скажем, в фотостудии, где используются мощные осветительные лампы: сначала вы уменьшаете яркость до половины, спокойно настраиваете освещение, не заставляя клиента щуриться и обливаться потом, затем выводите яркость на полную и производите съемку. Можно его также применить для плавного регулирования мощности нагревателя электроплитки или электродуховки и в других подобных случаях.
Так как устройство предполагает ручное управление, нам надо позаботиться о том, чтобы изолировать орган управления — это будет переменный резистор — от сетевого напряжения. Самое удобное было бы использовать для этого симисторную оптопару — к примеру, МОС2А60-10 фирмы Motorola. Такая оптопара работает совершенно так же, как отдельный симистор, только вход у нее — не управляющий электрод симистора, а светодиод, подобно тому, как это делается в диодных оптронах и оптоэлектронных реле, описанных в главе 7. Сами электронные реле, особенно если они содержат упомянутый ранее zero-детектор, использовать в данной схеме невозможно, т. к. никакого фазового управления не получится.
Но мы попробуем построить схему самостоятельно. Основную управляющую часть будем питать прямо от сети, а вот регулировочный резистор изолируем от нее с помощью оптрона — только не симисторного, а простого диодного или резисторного, выходное сопротивление которого линейно зависит от входного тока. Обеспечить питание управляющей части схемы при этом можно от любого изолированного от цепи источника (хоть покупного выпрямителя со встроенной вилкой).
Схема регулятора представлена на рис. 10.3.
Рис. 10.3.Схема ручного регулятора мощности в нагрузке
Сначала представим себе, что вместо фотодиода оптрона у нас в схеме стоит обычный постоянный резистор. Узел, который включает этот резистор, транзисторы VT1 и VT2, конденсатор С1 и резисторы R3-R6, представляет собой так называемый релаксационный генератор на аналоге однопереходного транзистора с n-базой. Хитрая схема включения разнополярных транзисторов VT1 и VT2 и есть этот самый аналог. Подробно свойства однопереходного транзистора мы рассматривать не будем, потому что за все время моей практики единственное применение для них нашлось только вот в такой схеме релаксационного генератора, причем описываемый тут аналог работает лучше, чем настоящий однопереходный транзистор (КТ117).
Для нас достаточно знать, что такое устройство работает следующим образом: если напряжение на входе (т. е. на соединенных эмиттерах VT1 и VT2) меньше, чем на соединенных базе VT1 и коллекторе VT2 (т. е. на делителе R3-R4), то такой транзистор заперт. Если же напряжение на входе превысит напряжение на делителе R3-R4, то транзистор откроется, причем необычным образом — ток потечет от входа к эмиттеру транзистора VT2 и создаст падение напряжения на резисторе R5. В открытом состоянии он будет, подобно тиристору, пребывать до тех пор, пока ток через него (напряжение на входе) н