Занимательная электроника — страница 50 из 128

Сама микросхема TDA2030 выпускается в корпусе ТО220, знакомом нам по мощным транзисторам, только здесь он имеет не три вывода, а пять. Разводка выводов приведена на схеме, а для того чтобы определить расположение выводов, надо положить микросхему маркировкой вверх — тогда вывод номер 1 будет находиться первым слева (в однорядных корпусах микросхем и транзисторов ключ для определения начала отсчета выводов часто отсутствует, но первый вывод всегда расположен именно так).

Рекомендованная в инструкции площадь охлаждающего радиатора для выходной мощности 14 Вт должна составлять 350–400 см2, однако, на мой взгляд, эта величина завышена, как минимум, вдвое. Впрочем, подобное заключение я могу подтвердить, кроме весьма приблизительной методики расчета из главы 8, лишь личным опытом, и оно не должно быть воспринято, как руководство к действию — это совет из той самой серии «на ваш страх и риск». Скорее всего, разработчики из фирмы ST Microelectronics взяли двукратный запас специально: во-первых, ориентируясь на наихудший случай, когда радиатор будет стоять горизонтально в каком-нибудь тесном непроветриваемом пространстве (ведь мы говорили, что все расчеты радиаторов очень приблизительны!), и, во-вторых, чтобы уменьшить уровень искажений при больших мощностях из-за встроенного механизма тепловой защиты, о котором мы упоминали ранее.

На рис. 11.8 показано, как можно построить усилитель с удвоенной выходной мощностью при тех же напряжениях питания и используемых деталях. Это так называемая мостовая схема, которая представляет собой два идентичных усилителя, работающих на одну нагрузку в противофазе: когда на выходе одного усилителя положительный максимум напряжения, на другом — отрицательный.



Рис. 11.8.Схема мостового усилителя звуковой частоты


Таким образом, амплитуда и действующее значение напряжения на нагрузке возрастает ровно в два раза, соответственно растет и мощность, которая здесь составит при условии неискаженного сигнала почти 30 Вт.

Для того чтобы усилители работали именно так, как указано, обычный (неинвертирующий) вход второго усилителя заземляется, а входной сигнал для него поступает на другой (инвертирующий) вход, туда же, куда и заведена его обратная связь. Сам этот входной сигнал берется с того места, куда поступает сигнал от первого усилителя (с левого по схеме вывода динамика), и ослабляется в той же степени, в которой оно было усилено первым усилителем, — вследствие равенства резисторов цепочки обратной связи R4-R3, задающей коэффициент усиления первого усилителя, и делителя Rд-R3'. То есть на вход 2 второго усилителя поступает фактически то же самое входное напряжение, но так как вход имеет противоположную полярность, то на выходе второго усилителя повторится сигнал на выходе первого, только в противофазе, чего мы и добивались. Отметим, что для такого усилителя придется соорудить более мощный источник питания, чем тот, что описан в главе 9.


Микроусилитель мощности

Не так уж редко возникает задача вывести звуковой сигнал на маломощный динамик или на головные наушники. Кроме очевидных применений вроде воспроизведения музыки, такой усилитель пригодился бы, скажем, в многочисленных конструкциях металлоискателей (их полно в Сети и радиолюбительской литературе), в иных сигнальных устройствах. Такие усилители применяют и в различных звуковых модулях, ориентированных на управление от Arduino.

Существует, естественно, масса типов микросхем от разных производителей, которые осуществляют усиление звукового сигнала с возможностью выхода на низкоомную нагрузку, мы же остановимся на одной из самых когда-то популярных — МС34119 (изготавливается не только фирмой Motorola, как можно было бы заключить из названия, но и другими фирмами, возможно, с другими буквенными префиксами). Микросхема выпускается в обычном корпусе всего с восемью выводами (DIP-8) и никаких радиаторов не требует.

Микросхема обладает весьма неплохими характеристиками, основные из которых таковы:

□ напряжение питания: 2-16 В (однополярное);

□ сопротивление нагрузки: 8 Ом (минимальное);

□ частота единичного усиления: 1,5 МГц;

□ выходная мощность при напряжении питания 6 В и нагрузке 32 Ом: 250 мВт (коэффициент гармоник 0,5–1 %);

□ время готовности после включения питания — не более 0,36 с.

Самое главное — не надо ни о чем думать, все уже придумано за вас. Вариант типовой схемы включения приведен на рис. 11.9. Коэффициент усиления задается двумя резисторами: R1 и R2 и равен их отношению R2/R1, т. е. в данном случае 25.



Рис. 11.9.Схема включения микросхемы МС34119


Максимально возможная мощность в нагрузке (0,5 Вт) достигается при питании 12 В и нагрузке 32 Ом (головные наушники). В других сочетаниях нагрузки и питания такая мощность при допустимом уровне искажений не достигается. Обратите внимание, что динамик не имеет соединения с «землей» (что естественно для схемы с однополярным питанием). Имеется также интересная возможность выключения усилителя с помощью сигнала от логических микросхем (например, от микроконтроллера) — если подать на вывод 1 напряжение более 2 В, микросхема выключится и будет потреблять ток не более нескольких десятков микроампер (правда, сопротивление по этому входу не очень велико — 90 кОм, что создаст дополнительное потребление).

Другие схемы УМЗЧ на микросхемах вы, без сомнения, найдете в достаточном количестве в литературе и в Сети, а мы, наконец, вплотную займемся самыми универсальными аналоговыми микросхемами — операционными усилителями.

ГЛАВА 12Самые универсальные

Обратная связь и операционные усилители


Нам нужны надежные исполнители наших поручений не только для того, чтобы добиться успеха, но также и для того, чтобы не потерпеть неудачи.

А. Дюма. Три мушкетера


Классическое определение гласит: операционным усилителем называется дифференциальный усилитель постоянного тока (УПТ) с большим коэффициентом усиления. Наличие в этом определении слов «постоянного тока» не означает, что ОУ усиливают только сигналы частотой 0 Гц, — здесь имеется в виду, что они могут усиливать сигналы, начиная с частоты 0 Гц. Слова «с большим коэффициентом усиления» означают, что он действительно большой, — хороший ОУ имеет коэффициент усиления порядка нескольких сотен тысяч или даже миллионов (куда там микросхеме TDA2030 с ее 30 тысячами!).

Название операционный закрепилось за такими усилителями исторически, потому что во времена господства ламповой техники они использовались в основном для моделирования различных математических операций (интегрирования, дифференцирования, суммирования и пр.) в так называемых аналоговых вычислительных машинах. Других применений у тех ОУ практически не было и быть не могло, потому что для достижения приемлемых характеристик не годилась не только ламповая, но и дискретно-транзисторная схемотехника. Настоящий переворот произошел только в середине 1960-х годов после пионерских работ по конструированию интегральных ОУ неоднократно уже упоминавшихся на этих страницах Робертом Видларом (рис. 12.1).



Рис. 12.1.Роберт Видлар (Robert J. Widlar), 1937–1991


Разумеется, практически использовать ОУ можно только в схемах с отрицательной обратной связью (за одним исключением, описанным далее). Огромный коэффициент усиления приведет к тому, что без обратной связи такой усилитель будет находиться в состоянии, когда напряжение его выхода равно (или, как мы увидим дальше, почти равно) одному из напряжений питания, положительному или отрицательному — такое состояние еще называют, по аналогии с транзисторами, состоянием насыщения выхода. В самом деле, чтобы получить на выходе напряжение 15 В, ОУ достаточно иметь на входе сигнал в несколько десятков микровольт, а такой сигнал всегда имеется — если это не наводка от промышленной сети или других источников, то достаточно и внутренних причин, о которых мы еще будем говорить.

Впрочем, есть и исключение — так называемые компараторы представляют собой ОУ, которые предназначены для использования без отрицательной обратной связи и иногда даже наоборот, с положительной обратной связью. К компараторам мы еще вернемся в этой главе, а пока рассмотрим некоторые общие принципы по- строения стандартных схем на ОУ.


Опасные связи

Согласно определению, отрицательная обратная связь — это связь выхода со входом, при которой часть выходного сигнала вычитается из входного. В противоположность отрицательной, в случае положительной обратной связи часть выходного сигнала со входным сигналом суммируется. Эти определения справедливы не только для усилителей и других электронных устройств, но и во всех других случаях, когда обратная связь имеет место. В общем случае можно воздействие обратной связи на некую систему описать так: наличие отрицательной обратной связи повышает ее устойчивость, наличие положительной — наоборот, ведет к неустойчивости.

* * *

Принцип обратной связи

Впервые использовать принцип обратной связи в электронных усилителях с целью повышения их линейности, устойчивости и других эксплутационных характеристик предложил американский инженер, сотрудник Лабораторий Белла (Bell Labs) Харольд Блэк в 1927 году. О сложности предмета говорит тот факт, что первый патент Блэка с описанием его усилителя имел объем целых 87 страниц, а всего он получил 347 патентов. Построение общей теории обратных связей было завершено математиком Хендриком Ваде Боде к 1945 году. В 1948 году Норберт Винер в своей знаменитой «Кибернетике» впервые показал, как использовать принцип обратной связи при рассмотрении любых систем: технических, биологических, социальных и пр.

* * *

Принцип действия обратных связей можно пояснить, скажем, на примере классической взаимосвязи спроса и предложения в экономике. Предположим, у нас имеется некая фирма, которая состоит из производственных структур и каналов сбыта. На входе такой системы — задание на производство, на выходе — объем произведенной продукции. Сколько нужно производить товара? Естественно, столько, сколько его могут потребить. В идеальной системе происходит следующее: фирма производит один экземпляр товара и, как только его покупают, немедленно выдает на прилавок следующий