Занимательная электроника — страница 51 из 128

экземпляр. Если фирма произведет два экземпляра, и один из них на прилавке задержится, то производство приостанавливается до тех пор, пока этот экземпляр не купят. Здесь мы наблюдаем типичное действие отрицательной обратной связи, роль которой играет спрос, — лежащий на прилавке экземпляр товара как бы вычитается из задания на производство, и оно приостанавливается. Такая система очень устойчива и к тому же обладает множеством приятных свойств: не имеет перерасхода энергии и материалов, не приводит к перепроизводству или, в пределах мощности производства, наоборот, к дефициту. Объем перепроизводства может составить максимум один экземпляр, который придется выбросить, если спрос на него упал до нуля. Интересно, что примеры таких близких к идеалу производств можно встретить и в реальной жизни — это, скажем, торговля горячей выпечкой, когда следующий пирожок изготавливается только, если предыдущий уже купили.

Но в большинстве случаев в реальной жизни все обстоит гораздо сложнее: и прямых, и обратных связей существенно больше одной, реакция на спрос не может быть мгновенной, да и система не изолирована от всей остальной экономики. Посмотрим, например, что произойдет с нашей идеальной системой, если производство не может остановиться и возобновить работу мгновенно, или, что то же самое, сведения об изменении спроса поступают не сразу, а с некоторым запаздыванием.

Предположим, фирма делает 10 экземпляров товара в день, и указанное запаздывание составляет также 1 день. Допустим, в какой-то из дней спрос упал на 2 штуки. Из-за запаздывания реакции на изменение спроса в этот день фирма произведет по-прежнему 10 штук, так что на следующее утро на. прилавке их окажется 12. Если в этот день спрос по-прежнему будет составлять 8 штук, то к следующему утру на прилавке окажутся те же 12 экземпляров (8 произведенных — фирма отреагировала на изменение, плюс 4 оставшихся от предыдущего дня). Согласно реакции предыдущего дня и в этот день фирма также произведет всего 8 экземпляров. Но предположим, что в этот день спрос внезапно возрос и составил 12 экземпляров, т. е. все имеющиеся оказались раскуплены. На следующее утро на прилавке будет лежать 8 штук (произведенных накануне), и если спрос сохранится, то 4 из 12 гипотетических клиентов уйдут неудовлетворенными. Им предложат зайти через два дня, и на следующий день фирма вынуждена будет произвести 4 + 12 = 16 экземпляров товара! Легко сообразить, что будет происходить дальше с производством и удовлетворением спроса, — система станет раскачиваться все сильнее и сильнее, пока в дело не вступят естественные ограничения: объем производства не может быть меньше нуля и больше фактической мощности производства (в случае электронных систем роль таких ограничений выполняет напряжение питания или достижимая мощность выходного каскада усиления). Работоспособность системы будет полностью нарушена — отрицательная обратная связь превратилась в положительную.

Поскольку реальные системы не могут иметь нулевое запаздывание по цепям прямой и обратной связи, возникает вопрос — какие меры нужно принять для того, чтобы система не раскачивалась все сильнее и сильнее? Обсуждение теории устойчивости систем с обратной связью в общем случае (скажем, известного метода Найквиста) увело бы нас слишком далеко, однако практические меры в простых системах не так уж и сложны. В основном они сводятся к тому, чтобы ограничить коэффициент усиления исходной системы и/или глубину обратной связи на таких частотах, когда отрицательная обратная связь начинает превращаться в положительную. Иными словами, чтобы фазовый сдвиг части выходного сигнала, поступающей обратно на вход, относительно самого входного сигнала не достигал бы близких к 180° величин при сравнимой или даже большей входного сигнала амплитуде этой части (поглядите на графики суммирования синусоидальных сигналов в главе 4, чтобы лучше понять, в чем тут дело).

Грубо эти частоты можно оценить следующим образом: если задержка сигнала в ОУ составляет 1 мкс, то (при мгновенной обратной связи, как это имеет место в случае ее осуществления с помощью резистивного делителя) при подаче сигнала частотой около 1 МГц с выхода на вход усилителя фазовый сдвиг составит ровно 180°, и усилитель будет раскачиваться неограниченно. Значит, нужно сделать так, чтобы усиление самого усилителя без обратной связи еще задолго до достижения указанной частоты падало и становилось равным единице ровно на частоте, соответствующей задержке. Это и есть так называемая коррекция усилителей. Причем, чем выше установленный с помощью обратной связи коэффициент усиления (т. е. чем меньше глубина обратной связи), тем выше допустимый порог по предельной частоте исходного усилителя — это обусловлено тем, что на вход при росте этого коэффициента передается меньшая часть выходного сигнала. Разница между фазой входного сигнала ОУ после суммирования и 180 градусами называется запасом по фазе — если он невелик, то при прохождении через усилитель, скажем, сигнала прямоугольной формы на выходе могут наблюдаться выбросы или даже небольшие колебания по фронту и по спаду выходного напряжения.

Наибольшую опасность несет в себе режим с установленным коэффициентом усиления, равным единице (т. е. использование ОУ в качестве повторителя). Роберт Видлар был сторонником того, чтобы переложить заботу о коррекции ОУ на плечи пользователей, и первые его конструкции ОУ (например, μА702, выпускавшийся в нашей стране под названием 140УД1, или получивший широкую известность цА709) имели специальные выводы для коррекции с помощью внешних резисторов и конденсаторов. Разработчик мог в некоторых пределах выбирать ширину полосы пропускания частот в зависимости от установленного коэффициента усиления.

Практически же этим никто не пользовался (подобно тому, как подавляющее большинство пользователей компьютерных программ работают с установками, введенными в них разработчиками по умолчанию), и такая возможность только приводила к необходимости введения в схему лишних компонентов. Так что в настоящее время выводы для внешней коррекции сохранились лишь для некоторых моделей высокочастотных ОУ, где полоса частот — действительно критичный фактор.

* * *

Заметки на полях

Кстати, а каковы в свете всего изложенного могут быть рекомендации нашим предпринимателям из производственной фирмы? Они совершенно аналогичны методам для обеспечения стабильности ОУ — нужно ограничить глубину обратной связи и коэффициент усиления на высоких частотах. Проще говоря, им следует при наличии запаздывания не пытаться реагировать на каждый проданный или непроданный экземпляр, а выпускать некое среднее количество товара в сутки, изменяя его только, когда изменился средний объем продаж за промежуток времени, значительно больший времени реакции производства, — это равносильно ограничению усиления на высоких частотах. Если вы попробуете повторить рассуждения про нашу фирму, введя время реакции производства, скажем, на среднее за неделю количество проданных в сутки экземпляров, а не реагируя на продажи за каждые сутки, как ранее, то увидите, что система стала значительно устойчивее, хотя на ее выходе и могут наблюдаться некоторые высокочастотные колебания — т. е. количество товаров на прилавке может колебаться с частотой несколько экземпляров в день, но в среднем будет примерно следовать за колебаниями спроса.

* * *

Кстати, по всем этим причинам большинство ОУ представляют собой низкочастотные приборы — обычная частота единичного усиления f1 (т. е. частота, на которой собственный коэффициент усиления снижается до 1) для распространенных типов не превышает 1–3 МГц. Например, для использованного в схеме лабораторного источника (см. главу 9) древнего μА741 эта частота равна 0,8 МГц. Для некоторых моделей ОУ, специально предназначенных для усиления постоянного тока и медленно меняющихся сигналов, частота f1 еще меньше — скажем, для очень хорошего прецизионного ОУ МАХ478/479 она равна всего 60 кГц. С другой стороны, есть и быстродействующие ОУ, для которых f1 достигает десятков МГц. С частотой единичного усиления тесно связана другая характеристика ОУ — скорость нарастания выходного сигнала.

Не забудем также, что в реальных системах часто могут иметь место многочисленные так называемые паразитные обратные связи, учет которых весьма затруднен, если вообще возможен. Именно наличие таких связей приводит к «гудению» УМЗЧ даже в том случае, если с основными связями все в порядке, и в том числе именно для борьбы с этим явлением ставят развязывающие конденсаторы по питанию.


Основные свойства системы с отрицательной обратной связью

Отрицательная обратная связь в усилителях не только позволяет точно установить коэффициент усиления, как мы уже знаем из примеров в главах 8 и 11, но и приводит еще ко многим приятным улучшениям схемы. Попробуем разобраться, почему это так и каково влияние характеристик реальных ОУ на параметры схемы.

На рис. 12.2 приведена обобщенная схема некоторой системы, охваченной отрицательной обратной связью.



Рис. 12.2.Обобщенная схема системы с отрицательной обратной связью


Коэффициент усиления К основной системы обычно больше единицы — в случае ОУ это и есть его собственный коэффициент усиления, который может достигать сотен тысяч и миллионов. Коэффициент передачи по обратной связиβ обычно, наоборот, меньше единицы (хотя ничего, кроме вышеуказанных частотных ограничений, не мешает нам сделать его и больше единицы — просто вся система тогда будет не усиливать, а ослаблять сигнал). Кружок с плюсиком в нем означает устройство для суммирования сигналов — сумматор.

Если разорвать петлю обратной связи, то сигнал на выходе Uвых был бы равен К·Uвх (разумеется, в реальной системе напряжение питания его бы ограничило, но для наших рассуждений это неважно). Однако при действии обратной связи это не так. На вход выходной сигнал передается с коэффициентом ослабления