β, и сигнал после сумматора, т. е. на входе основной системы, будет равен Uвх — β·Uвых (минус, т. к. обратная связь отрицательная). Этот сигнал передается на выход с коэффициентом К, т. е. Uвых = К·(Uвх — β·Uвых), или Uвых = К·Uвх/(1 + К·β). Поскольку коэффициент передачи Кусвсей системы по определению есть Uвых/Uвx, то в результате для него получаем следующую формулу:
(1)
Отсюда следует интересный вывод: если К много больше 1 (а в случае ОУ это действительно так с огромной степенью точности), то единицу в формуле (1) можно не принимать во внимание, и коэффициент передачи будет выражаться простым соотношением
Кус = 1/β. (2)
Формула (2) и означает, что коэффициент передачи входного сигнала на выход будет определяться только параметрами обратной связи и никак не зависит от характеристик системы. Причем, чем выше собственный коэффициент усиления системы К, тем точнее соблюдается это положение (мы об этом упоминали в главе 11 при сравнении характеристик УМЗЧ, построенных на фирменной микросхеме и на дискретных элементах по схеме из главы 8).
Введение отрицательной обратной связи приводит также еще к некоторым последствиям. Для практических целей достаточно их просто запомнить, не углубляясь в математические выкладки:
□ входы ОУ не потребляют тока (входное сопротивление ОУ практически равно бесконечности, точнее — увеличивается по сравнению с ОУ без обратной связи в Кβ раз);
□ ОУ с отрицательной обратной связью всегда стремится установить потенциалы на его входах равными между собой.
Характеристики конкретной схемы определяются соотношением собственного коэффициента усиления ОУ и коэффициента передачи системы с замкнутой обратной связью — чем выше это соотношение, тем ближе схема к идеалу. Интересно, что если на практике для обеспечения фактической независимости коэффициента усиления схемы от характеристик ОУ достаточно было бы иметь собственный коэффициент усиления всего в несколько тысяч (что и демонстрируют нам схемы УМЗЧ), то для того чтобы получить, например, действительно высокое входное сопротивление (измеряемое гигаомами и более), приходится увеличивать К до величин в сотни тысяч и более.
Отметим также, что использование обратной связи в указанной ранее степени уменьшает и выходное сопротивление всего усилителя, которое становится очень близким к нулю — точнее, примерно равным Rвых(1 +Кβ), где Rвых — это собственное выходное сопротивление ОУ, лежащее обычно в диапазоне сотен ом. Так что выходное сопротивление получается порядка 1 миллиома. Только не забывайте, что мощность выходного каскада ограниченна, и если вы его перегрузите, то от падения напряжения на нагрузке вас уже никакая обратная связь не спасет. Для общего развития попутно заметим, что в системе, представленной на рис. 12.2, ничего не изменится, если схему перевернуть: считать за усилитель узел обратной связи, за узел обратной связи для него — сам усилитель, за входной сигнал — выходной и наоборот.
Типичный пример такой двойственности мы увидим в схеме простейшего термостата далее. Все зависит только от терминологии, ^которая есть лишь вопрос удобства. Это хорошо иллюстрирует то философское положение, что мы слишком часто оперируем реальными вещами в зависимости от того, как мы их назвали, в то время как на самом деле их поведение совершенно от этого не зависит.
Схема неинвертирующего усилителя (рис. 12.3, а) нам хорошо знакома — именно она составляет основу лабораторного источника питания из главы 9 (см. рис. 9.12). Анализ ее элементарно прост и исходит из рассмотренных ранее правил: Uoc = Uвх, т. е.:
Uвх= Uвых·R2/(R1 + R2).
Тогда коэффициент усиления:
Кус = Uвых/Uвх = (R1 + R2)/R2 = 1 + R1/R2,
каким мы его и предполагали в главе 9.
Рис. 12.3.Базовые схемы на ОУ:
а — неинвертирующий усилитель; б — инвертирующий усилитель, в — повторитель; г — инвертирующий усилитель с высоким коэффициентом усиления
Единица, которая плюсуется к отношению сопротивлений резисторов обратной связи в выражении для коэффициента усиления, — очень важное дополнение, потому что если убрать в схеме неинвертирующего усилителя резистор R2 (т. е. принять его равным бесконечности), то отношение сопротивлений станет равным нулю, а Кус — равным 1. Соответствующая схема показана на рис. 12.3, в и носит название повторителя. Зачем она нужна, если ничего не усиливает? Эта схема обладает одним бесценным свойством: ее входное сопротивление равно практически бесконечности, а выходное — практически нулю (в пределах, конечно, мощности выходного каскада, как мы уже говорили). Поэтому повторитель очень часто используют в случаях, когда нужно согласовать источник сигнала с высоким выходным сопротивлением с низкоомным приемником, и мы еще увидим примеры такого согласования.
В неинвертирующем усилителе обратная связь носит название обратной связи по напряжению. В отличие от него, в инвертирующем усилителе (рис. 12.3, б) обратная связь имеет характер обратной связи по току, и вот почему. Так как здесь неинвертирующий вход имеет потенциал «земли», то и инвертирующий тоже всегда будет иметь такой же потенциал. Следовательно, от входа через резистор R2 потечет некий ток (Iвх). А раз мы договорились, что сам вход ОУ тока не потребляет, то этот ток должен куда-то деваться, и он потечет через резистор R1 на выход ОУ.
Таким образом, входной ток (Iвх) и ток обратной связи (Iос) — это один и тот же ток. Причем потенциал выхода ОУ вынужденно станет противоположным по знаку потенциалу входа — иначе току некуда будет течь. Чему равен коэффициент усиления? Поскольку Uвх/R2 = Uвых/R1, то Кус = Uвых/Uвх = R1/R2. Обратите внимание, что в этом случае, в отличие от неинвертирующей схемы, единицу прибавлять не нужно. Поэтому R2 в данном случае есть необходимый элемент схемы и не может равняться ни нулю, ни бесконечности, за исключением того случая, когда источник сигнала сам по себе представляет источник тока, а не напряжения, — тогда R2 из схемы можно (и нужно) исключить и подать токовый сигнал прямо на вход ОУ.
Похожее на приведенные соотношения уравнение для коэффициента усиления мы получали при рассмотрении транзисторного усилительного каскада в главе 6, где оно было равно отношению коллекторной нагрузки к сопротивлению в эмиттерной цепи. Это обусловлено тем, что в транзисторном каскаде также имеет место обратная связь.
Отметим, что подавать именно нулевой потенциал на неинвертирующий вход совершенно необязательно — скажем, если вы используете однополярный источник питания, то на неинвертирующий вход подается потенциал «искусственной средней точки», как это было сделано в схеме УМЗЧ из главы 11. Можно и любой другой, и мы еще будем этим широко пользоваться.
Максимальное значение выходного напряжения ОУ не всегда может равняться положительному или отрицательному напряжению питания — как правило, оно меньше его на величину порядка 0,5–1,5 В (простейшим примером для понимания того, почему это так, служит наш звуковой усилитель из главы 8). То же самое относится и к входным напряжениям — как правило, достигать значений питания не разрешается. Однако многие современные типы ОУ это все же позволяют, и выходное/входное допустимое напряжение у них достигает значений питания (чаще — только одно выходное). Это свойство в западной технической документации обозначается как Rail-to-Rail (т. е. «от шины до шины»), и на него нужно обращать внимание при выборе ОУ. При этом следует учитывать, что выходное напряжение может достигать напряжения питания только на холостом ходу, а с подключением нагрузки оно снижается.
Мы сейчас ведем речь об ОУ общего применения, к которым относятся старички μА741 (К140УД7), отечественные 140УД6, 140УД8 (последний — с полевыми транзисторами на входе) или счетверенный LM324 (который поддерживает Rail-to-Rail по входу и, частично — в отношении потенциала «земли», — по выходу), но, конечно, есть и более современные типы, многие из которых упоминаются далее. Как выбрать подходящий ОУ из всего разнообразия, имеющегося на рынке? Кроме очевидных характеристик, таких как ток потребления и допустимое напряжение питания, следует учитывать параметры, которые характеризуют неидеальность ОУ.
Если входное сопротивление неинвертирующего усилителя равно практически бесконечности, то инвертирующего почти в точности равно R2. Почти — по ряду различных причин, на которых мы не будем останавливаться, потому что эта разница несущественна для практических нужд. Важнее другое — входы реального ОУ все же потребляют ток, называемый током смещения, хотя и очень небольшой. Ток смещения на инвертирующем входе (в любой из двух схем) создаст падение напряжения на резисторе обратной связи, и оно воспринимается как входной сигнал. Если этот ток равен, к примеру, 0,2 мкА (казалось бы — так мало!), как у нашего любимого μА741, то при сопротивлении R1 = 1 МОм напряжение на выходе при отсутствии напряжения на входе достигнет 0,2 В.
Как обычно, в большинстве случаев важно не само по себе смещение, а его нестабильность. Борьба с этим явлением может вестись в трех направлениях: во-первых, не следует использовать в цепочке обратной связи сопротивления большого номинала, стандартный диапазон их — от килоом до десятков килоом. Если же при необходимости сохранить достаточно высокое входное сопротивление инвертирующего усилителя при большом коэффициенте усиления применение высокоомных резисторов желательно, то следует использовать схему, показанную на рис. 12.3,