Занимательная электроника — страница 60 из 128

2,3 мВ/°С. Все промышленные полупроводниковые датчики тем или иным способом используют этот эффект.

Фирменные полупроводниковые датчики делятся на две разновидности: с аналоговым и цифровым выходом. Аналоговые датчики (DS60, МАХ6605) имеют обычно три вывода (питание, общий и выход), а цифровые иногда всего два (DS1721), питаясь от сигналов запроса, поступающих с внешнего контроллера (см. главу 11).

Следует особо отметить довольно точные датчики ТМР35/ТМР36/ТМР37 фирмы Analog Devices (аналоги: LM135/235/335 фирмы ST Microelectronics или 1019ЕМ1 отечественного исполнения), которые включаются подобно диоду, но несут третий вывод для подстройки температурного коэффициента, имеющего величину аж 10 мВ/°С, причем с положительным наклоном.

Полупроводниковым датчикам, как правило, свойственны погрешности заводской установки порядка 1–2 °C, и иногда встречающееся в характеристиках определение «прецизионный», видимо, относится к повышенной их стабильности — после соответствующей калибровки погрешности снижаются до порядка долей градуса. Впрочем, как показал опыт, специальные цифровые датчики со встроенным микроконтроллером, позволяющим выдавать «наружу» непосредственно физическую величину в градусах, довольно точны, и часто дополнительной калибровки не требуют (см. главу 22).

* * *

Средства калибровки

В домашней практике для поверки разрабатываемых самостоятельно приборов лучше всего использовать ртутный лабораторный термометр с делениями не крупнее одной-двух десятых градуса (погрешность таких термометров, однако, может быть выше и составлять 0,2 и даже 0,5 °C). Основной диапазон — от 0 до 50 °C, поэтому может потребоваться еще один термометр для диапазона до 100 °C, а также в отрицательной области. Но за неимением таковых, конечно, можно обойтись и бытовыми спиртовыми или цифровыми термометрами (последние должны иметь выносной датчик), только не следует забывать про их достаточно высокую погрешность, которая может составлять 1–2 °C.

Категорически не рекомендуется применять для калибровки бытовые металлические термометры расширения (с такой спиралькой, соединенной со стрелочкой, они всем знакомы по бытовым газовым или электрическим духовкам) — они могут ошибаться на десятки градусов. Если требуется калибровка при повышенных температурах, то лучше использовать термометры на основе термопары, которыми комплектуются некоторые мультиметры. Правда, последние решительно не годятся для обычного диапазона температур, по причине, которую мы рассмотрим далее.


Методы измерения сопротивления

Рассмотрим методы, с помощью которых можно измерять сопротивление металлических датчиков с точностью, достаточной для пересчета его в температуру. Обычный мультиметр тут не подойдет — рядовой прибор измеряет сопротивление с погрешностью порядка 1 % от всей шкалы. Поэтому, измеряя таким прибором, скажем, сопротивление медного датчика 100 Ом (с крутизной менее 0,4 Ом/°С) на пределе 200 Ом, мы получим погрешность в пересчете на температуру градусов в пять, что неприемлемо даже для самых непритязательных радиолюбителей (именно по этой причине термометры на основе мультиметров не годятся в качестве средств калибровки в малом диапазоне температур).

Изложим основную идею проведения измерений сопротивления металлических датчиков с приемлемой точностью (рис. 13.2).



Рис 13.2.Мостик Уитстона


Она известна еще со времен английского физика Ч. Уитстона (1802–1875), чьим именем и названа показанная на рисунке конструкция из четырех сопротивлений. Такой мостик Уитстона, как мы увидим, в той или иной форме используется на практике и по сей день. Уитстон прославился еще своими работами в области телеграфии и рядом других достижений, но приведенная схема, без сомнения, самое выдающееся его изобретение.

Для того чтобы измерить величину сопротивления Rx, положение движка переменного сопротивления R2 устанавливается так, чтобы напряжение в выходной диагонали моста (Uвых) было равно нулю. Если в этот момент измерить установленное значение R2 (можно заранее проградуировать его ползунок в единицах сопротивления) и отношение сопротивлений резисторов R1 и R3 также известно, то неизвестное сопротивление определяется по формуле:


Участвующие в схеме резисторы называются плечами моста. Можно также объединить R2 и R3 в один переменный резистор, включенный по схеме потенциометра (Uвых тогда снимается с его движка, а за плечи R2 и R3 принимаются его части между движком и выводами).

Мостовой способ имеет ряд преимуществ. Во-первых, работа этой схемы в принципе не зависит от напряжения питания, потому что баланс определяется не абсолютными значениями падений напряжения на резисторах, а их соотношением. На практике некоторая зависимость будет иметь место (т. к. чувствительность схемы со снижением питания падает), но, тем не менее, в довольно широких пределах это положение соблюдается.

Во-вторых, обеспечить фиксацию момента равенства напряжения в диагонали моста нулю (при этом условии мост называется сбалансированным) несравненно проще, чем измерить с достаточной точностью абсолютное значение напряжения или сопротивления. Для того чтобы настроить очень точно ноль вольтметра любого класса точности, никакого специального оборудования не требуется, достаточно замкнуть накоротко его входные клеммы. От вольтметра при этом требуется только одно — как можно более высокая чувствительность, потому такие методы отлично работали еще в XIX веке, когда никаких прецизионных приборов еще не существовало.

Так что точность зависит только от сопротивлений. Постоянные резисторы можно подобрать очень точно (на практике используют катушки из манганиновой калиброванной проволоки или готовые сопротивления класса 0,05). В качестве резистора R2 обычно используют магазины сопротивлений, которые представляют собой по сути дела переменный резистор, составленный из множества постоянных, которые могут коммутироваться с помощью набора десятипозиционных переключателей, называемых декадными. Причем все устроено таким образом, что каждый переключатель связан с сопротивлениями в десять раз меньшего или большего номинала, чем соседний.


Очень точный ручной измеритель температуры

Принципиальная схема для ручного измерения сопротивления образцового датчика температуры сопротивлением 100 Ом (платинового или медного) с использованием таких средств приведена на рис. 13.3.



Рис. 13.3.Принципиальная схема измерителя сопротивления образцового датчика температуры


Магазин сопротивлений на ней условно показан в виде переменного резистора Rм. Все резисторы, кроме, конечно, измеряемого сопротивления Rtи магазина Rм (а также, возможно, R1, который лучше подобрать из проволочных) — типа С2-29В. После ручного баланса моста с помощью магазина сопротивлений Rm (вольтметр на выходе должен показать ноль) измеряемое сопротивление Rt будет определяться по формуле:


где Rx есть величина нижней по схеме части сопротивления магазина. Сравнивая Rt с табличным значением [5], можно узнать измеряемую температуру.

* * *

Подробности

Инструментальный усилитель на микросхеме DA1 здесь нужен для обеспечения достаточной чувствительности схемы. Его коэффициент усиления выбирается из следующих соображений: допустим, наш мультиметр имеет на самом маленьком пределе измерения напряжений (200 мВ) чувствительность один знак после запятой, т. е. 0,1 мВ (обычная разрешающая способность рядовых мультиметров). При коротком замыкании его щупов на шкале должны показываться все нули (ноль не сдвинут и не «гуляет»). Некоторую погрешность при измерениях будет вносить всегда наличествующая помеха, поэтому возьмем запас и примем чувствительность его равной 1 мВ. Ток через датчик при выбранных номиналах сопротивлений и напряжении питания будет составлять приблизительно 4,5 мА. Для того чтобы обеспечить необходимую разрешающую способность измерения температуры приборами, которые мы будем конструировать (для большинства применений необходимая и достаточная величина ее составляет 0,1 °C), нам надо обеспечить разрешающую способность нашего образцового термометра не менее, чем в два раза более высокую (т. е. 0,05 °C — большая точность не имеет смысла, см. далее). Зададимся на всякий случай еще меньшей величиной — 0,03 °C. Датчик имеет сопротивление 100 Ом, поэтому при крутизне его характеристики, равной примерно 0,4 %/°С (величина справедлива и для платины, и для меди), изменение сопротивления будет численно равно этой величине — 0,4 Ом/°С. При указанном токе через измерительное плечо моста изменение напряжения на диагонали моста составит 1,8 мВ/°С, т. е. при изменении температуры на 0,03 градуса изменение напряжения составит 0,054 мВ. Нам желательно увеличить это напряжение разбаланса до установленного значения чувствительности мультиметра в 1 мВ, отсюда коэффициент усиления инструментального усилителя должен составить примерно 20.

* * *

Диапазон значений измеряемой температуры для этого устройства практически ограничен только возможностями датчика. Подробно погрешности нашей схемы мы анализировать не будем, только укажем, что с точки зрения точности схема обладает одним недостатком — в ней нескомпенсировано влияние соединительных проводов. Как такая компенсация выполняется, мы узнаем из главы 17. А здесь просто примем, что провода, соединяющие со схемой как датчик, так и магазин сопротивлений, должны быть минимально возможной длины и достаточно большой толщины — сечением не менее 2 мм. Эта схема критична также, кроме точности резистора R1, к выбору ОУ, и при замене следует применять только ОУ с точностными характеристиками не хуже указанных, а также обратить внимание на возможность их работы при напряжении питания ±5 В (см.