One-Time Programmable ROM, однократно программируемое ПЗУ. До недавнего времени на них делали память программ МК для удешевления серийных устройств — вы отлаживаете программу на перезаписываемой памяти, а в серию пускаете приборы с «прожигаемой» ОТР ROM. И лишь в последние годы «прожигаемая» память стала постепенно вытесняться более удобной flash-памятью, поскольку последняя подешевела настолько, что смысл в использовании одноразовых кристаллов пропал.
Мы сконструируем подобие «прожигаемого» ПЗУ с помощью диодов. Простейший вариант такого ПЗУ показан на рис. 18.4. В данном случае он представляет собой не что иное, как преобразователь из десятичного кода в семисегментный. Если на входе поставить дешифратор типа 561ИД1, переводящий двоичный код в десятичный, то мы получим аналог микросхемы 561 ИД5.
Рис. 18.4.Простейшее ПЗУ — преобразователь кода
Чтобы понять, как это работает, представьте себе, что первоначально на всех пересечениях между строками и столбцами диоды присутствовали — это аналог незаполненной памяти, в которой записаны все единицы. Затем мы взяли и каким-то образом (например, подачей высокого напряжения) разрушили те диоды, которые нам не нужны, в результате чего получили нужную конфигурацию.
Эта схема не содержит активных элементов, и потому возможности ее ограниченны, — например, выходы устройства, подающего активный высокий уровень по входным линиям, должны «тащить» всю нагрузку по зажиганию сегментов. Обычная микросхема ПЗУ построена на транзисторных ячейках и поэтому без всяких хитростей принимает и выдает обычные логические уровни. К тому же она включает в себя и дешифрирующую логику, поэтому на вход подается двоичный, а не десятичный код.
Постойте, а причем тут ПЗУ вообще? Дело в том, что входной код здесь можно рассматривать, как адрес ячейки, в выходной — как ее содержимое. И любое ПЗУ можно представить, как универсальный преобразователь кодов. Причем удобство состоит в том, что изначально в ПЗУ не записано ничего (одни нули или единицы), и мы можем реализовать на нем любую логическую функцию — все зависит только от его емкости. В том числе, такую простую, как преобразователь кодов десятичный-семисегментный, или же такую сложную, как операционная система Windows.
Последнее мы каждый раз и делаем, когда устанавливаем Windows на компьютер, причем в качестве ПЗУ выступает жесткий диск. Из этого примера отчетливо видно, что каким бы сложным ни был алгоритм, он все равно в конечном итоге сводится к совокупности однозначных логических уравнений, которые можно реализовать как через ПЗУ с записанной программой, так и с помощью цифрового устройства любого другого типа.
Общее устройство фрагмента памяти любого типа показано на рис. 18.5.
Рис. 18.5.Схематическое устройство ЗУ с однобитным последовательным выходом
Из рисунка видно, что память всегда представляет собой матричную структуру. В данном случае матрица памяти имеет 8x8 = 64 однобитных ячейки. Рисунок 18.5 демонстрирует, как производится вывод и загрузка информации в память с помощью мультиплексоров/демультиплексоров (вроде 561КП2, см. главу 15). Код, поступающий на мультиплексор слева (х3 - х5), подключает к строке с номером, соответствующим этому коду, активирующий уровень напряжения (это может быть логическая единица, как показано на рисунке, или ноль, неважно). Код на верхнем демультиплексоре (х0- х2) выбирает столбец, в результате к выходу этого демультиплексора подключается ячейка, стоящая на пересечении выбранных строки и столбца.
Легко заметить, что сама по себе организация матрицы при таком однобитном доступе для внешнего мира не имеет значения. Если она будет построена как 4х16, или 32x2, или даже вытянута в одну линеечку 64x1 — в любом случае код доступа (он называется адресным кодом) будет 6-разрядным, а выход один-единственный. Поэтому всем таким ЗУ приписывается организация TVxl бит, где N — общее число битов. Для того чтобы получить байтную организацию, надо просто взять 8 таких микросхем и подать адресный код на них параллельно, тогда на выходах получим параллельный восьмибитный код, соответствующий байту. Общая емкость такой памяти составит 64 х 8 = 512 битов или 64 байта. У нас получается хорошая модель типового модуля памяти, вроде тех, что используются в компьютерном ОЗУ.
Большинство выпускаемых интегральных ЗУ также сложены из таких отдельных однобитных модулей (только в наше время уже значительно большей емкости) и имеют 8, 16, 32 или большее количество параллельных выходов, но бывают кристаллы и с последовательным (побитным) доступом.
В качестве примера можно привести, скажем, ПЗУ с организацией 64Кх16 типа АТ27С1024 фирмы Atmel (рис. 18.6).
Рис. 18.6.Разводка выводов АТ27С1024
Это однократно программируемое КМОП ПЗУ с напряжением питания 5 В и емкостью 1024 Мбит, что составляет 128 Кбайт или 64 К двухбайтных слов. Следует отметить, что в области микросхем памяти сложилась хорошая традиция, когда все они, независимо от производителя и даже технологии, совпадают по выводам, разводка которых зависит только от организации матрицы (даже, как правило, не от объема!) и, соответственно, от применяемого корпуса (в данном случае — DIP-40). Для разных типов (RAM, ROM, EEPROM и т. д.) разводка различается в части выводов, управляющих процессом программирования, но можно спокойно заменять одну микросхему на другую (с той же организацией и, соответственно, в таком же корпусе) без переделки платы.
Традиционное название энергозависимых типов памяти, как и в случае ROM, следует признать довольно неудачным. RAM значит Random Access Memory, т. е. память с произвольным доступом, или, по-русски — ЗУПВ, запоминающее устройство с произвольной выборкой. Главным же признаком класса является не «произвольная выборка», а то, что при выключении питания память стирается. EEPROM (о которой далее), к примеру, тоже допускает произвольную выборку и при записи, и при чтении. Но так сложилось исторически, и не нам разрушать традиции.
Подавляющее большинство производимых микросхем ЗУПВ относится к динамическому типу. В них информация хранится в виде заряда на конденсаторе, который имеет привычку быстро утекать, и потому такая память требует периодической регенерации (раз в несколько миллисекунд). Зато она дешева (каждая ячейка состоит из одного конденсатора и одного транзистора) и упаковывается с высокой плотностью элементов, поэтому динамическое ЗУ (DRAM) является основным видом компьютерных ОЗУ.
Статическое ОЗУ (SRAM), ячейка которого представляет собой один из вариантов рассмотренных в главе 16 триггеров, устроено сложнее, имеет меньшую плотность упаковки (т. е. при тех же габаритах меньшую емкость) и стоит гораздо дороже. Главное ее преимущество, кроме того, что она не требует регенерации, — высокое быстродействие и отсутствие потребления в статическом режиме. Выпускаются отдельные микросхемы SRAM, как простые (например, UT62256 с организацией 32Кх8), так и довольно «навороченные»: так, микросхема М48Т35 кроме собственно массива памяти (32Кх8) содержит на кристалле часы реального времени, монитор питания и, главное, имеет встроенную литиевую батарейку, которая позволяет сохранять информацию при отключении питания. Но с распространением энергонезависимой flash-памяти, о которой будет рассказано далее, такие применения SRAM почти потеряли актуальность[28], и за ней остались главные области, где она незаменима: это регистры и кэш-память в микропроцессорах, а также ОЗУ данных в микроконтроллерах и ПЛИС.
По счастью, с DRAM нам в схемотехническом плане иметь дело не придется, а SRAM мы увидим только в составе микроконтроллеров. Поэтому рассмотрим подробнее более актуальные для пользователя разновидности ROM.
На заре возникновения памяти, сохраняющей данные при отключении питания (EPROM, Erasable Programmable ROM, стираемая/программируемая ROM, или по-русски — ПИЗУ, программируемое ПЗУ), основным типом ее была память, стираемая ультрафиолетом: UV-EPROM (Ultra-Violet EPROM, УФ-ППЗУ). Причем часто приставку UV опускали, т. к. всем было понятно, что EPROM — это стираемая ультрафиолетом, a ROM (или ПЗУ) просто, без добавлений — это однократно программируемые кристаллы OTP-ROM. Микроконтроллеры с УФ-памятью программ были распространены еще в середине 1990-х. В рабочих образцах устройств с УФ-памятью кварцевое окошечко, через которое осуществлялось стирание, заклеивали кусочком черной липкой ленты, т. к. информация в UV-EPROM медленно разрушается и на солнечном свету.
На рис. 18.7 показано устройство элементарной ячейки EPROM, которая лежит в основе всех современных типов flash-памяти. Если исключить из нее то, что обозначено надписью «плавающий затвор», мы получим самый обычный полевой транзистор — точно такой же входит в ячейку DRAM. Если подать на управляющий затвор такого транзистора положительное напряжение, то он откроется, и через него потечет ток (это считается состоянием логической единицы). На рис. 18.7 вверху изображен такой случай, когда плавающий затвор не оказывает никакого влияния на работу ячейки, — например, такое состояние характерно для чистой flash-памяти, в которую еще ни разу ничего не записывали.
Рис. 18.7.Устройство элементарной ячейки EPROM
Если же мы каким-то образом (каким — поговорим отдельно) ухитримся разместить на плавающем затворе некоторое количество зарядов — свободных электронов, которые показаны на рис. 18.7 внизу в виде темных кружочков со значком минуса, то они будут экранировать действие управляющего электрода, и такой транзистор вообще перестанет проводить ток. Это состояние логического нуля. Поскольку плавающий затвор потому так и называется, что он «плавает» в толще изолятора (двуокиси кремния), то сообщенные ему однажды заряды в покое никуда деваться не могут. И записанная таким образом информация может храниться десятилетиями (до последнего времени производители обычно давали гарантию на 10 лет, но на, практике в обычных условиях время хранения значительно больше).