Когда экран готов, на него кладут непрозрачный, по возможности плоский, предмет, например ключ от американского замка или серебряную мелкую монету, поместив их в конверт из черной бумаги.
(Такую бумагу можно достать у каждого фотографа-любителя, в нее бывают завернуты фотографические пластинки.) Экран, с положенным на него конвертом (не с той стороны, с которой экран покрыт чувствительным слоем, а с обратной), снизу приближают к лампе так, чтобы конверт находился на пути падающих вниз лучей. Для удобства рассматривания можно приспособить род столика, сколотив его из деревянных планок, или прямо класть экран горизонтально (чувствительным слоем вниз) на две вертикально поставленные книги.
Приведя в действие спираль или машину, снизу заглядывают на экран и замечают на светлом фоне люминесцирующего экрана тень ключа, монеты и тому подобных предметов, задерживающих или ослабляющих лучи Рентгена, свободно проходящие через черную бумагу в толщу экрана. Смотреть на экран, понятно, надо в темноте.
С такой примитивной установкой можно получать и фотографические (рентгенографические) изображения, даваемые невидимыми глазу лучами.
Если даже и не удастся обнаружить лучей вышеописанным образом по люминесценции экрана, то это еще не значит, что их нет. В таком случае надо попробовать, не может ли обнаружить их присутствие фотографическая пластинка.
Пластинку в темной комнате тщательно заклеивают в конверт из черной бумаги так, чтобы на нее не мог упасть ни один луч света, если получение рентгенографии предполагается днем.
Во избежание порчи пластинок лучше работать вечером при слабом и далеко поставленном от аппарата источнике света. Конверт с пластинкой помещают так же, как это делали с экраном (последний в данном случае не нужен), и на него под лампу кладут монету или тому подобный металлический плоский предмет. Экспонировать надо долго, не менее 20–30 минут, после чего пластинку проявляют каким-нибудь контрастным проявителем, всего лучше железным. Так как в настоящее время этот проявитель давно вышел из употребления, а для нашей цели он весьма пригоден, то сообщим его рецепт.
Готовят два раствора:
1) воды 1000 куб. см и средней (не кислой) щавелево-калиевой соли 300 г;
2) воды 300 г и железного (зеленого) купороса 100 г.
Раствор второй подкисляют 2–3 каплями серной или лимонной кислоты.
Для нормально выдержанных негативов в четыре части первого раствора вливают одну часть второго раствора. Вливают обязательно второй раствор в первый, а не наоборот, чтобы не получить осадка. При недодержках добавляют второго, а при передержках первого раствора. Для усиления контрастности прибавляют бромистого натра.
Тайна строения вещества
Упомянув о катодном потоке, трудно удержаться, чтобы не сказать хоть несколько слов о тех удивительных тайнах природы, казалось бы навеки скрытых от человека, которые в наше время удалось открыть ученым, работавшим над изучением «невидимого света».
Эти исследования, требующие необычайно сложных и точных приборов и значительной научной подготовки для того только, чтобы понять, на чем они основаны, не говоря уже о том, чтобы их воспроизвести, показали, что электрон – основа всех электрических явлений – в то же самое время и основа строения всякого вещества.
Все материальные тела, которые нас окружают, состоят из отдельных, более или менее удаленных друг от друга, ультрамикроскопических[14] частиц-молекул, в свою очередь состоящих из еще более ничтожных по размерам атомов.
Слово «атом» значит «неделимый», неделимым он и считался до начала нашего века.
Как ничтожен объем атома в сравнении с самой крохотной пылинкой, можно судить по тому, что в капельке воды на острие иглы заключаются миллиарды атомов.
И несмотря на такие невообразимо малые его размеры, несмотря на полную невозможность увидеть его воочию в самый сильный микроскоп, гений человеческой мысли нашел путь к точному определению его размеров и сумел выяснить сложность его состава.
Атом состоит из центрального ядра, несущего положительный электрический заряд, и отрицательно заряженных электронов, вращающихся вокруг этого ядра по орбитам определенных размеров, подобно орбитам планет, вращающихся вокруг Солнца. Те же электроны в свободном состоянии являются причиной отрицательного заряда тел, а их движение по проводникам – причиной электрического тока.
Что же такое сам электрон? Этого мы пока не знаем, как не знаем точно и того, что такое положительное ядро атома, вокруг которого вращаются электроны.
Зато мы знаем, во-первых, что положительный электрический заряд тел или, вернее, заряд, названный положительным, зависит не от наличия таких свободных атомных ядер, а от недостатка отрицательно заряженных электронов, а во-вторых, знаем размеры электронов.
Как ни бесконечно мал кажется нам атом, но он является колоссальным в сравнении с электронами, входящими в его состав. Если мысленно увеличить атом до размеров шара, радиус которого равен 2500 км (это будет шарик значительно больше Луны!), то размеры центрального атомного ядра возрастут до размеров крупного антоновского яблока, а электрон представится нам шаром с радиусом в 2 м.
Теперь вновь мысленно уменьшите атом до его действительных размеров и попытайтесь вообразить истинные размеры электрона!
Не правда ли, что высоко интересна та наука, которая позволила человеку прийти к таким знаниям? Эта наука – физика, являющаяся основой всей техники вообще и электротехники по преимуществу.
Трудно даже установить границу между учением об электричестве, как одном из отделов физики, и электротехникой, как прикладной отраслью знания.
В особенности трудно это сделать в их части, занимающейся явлениями невидимого света, с которыми мы только закончили наше краткое знакомство.
Волны в эфире
Радиосигнализация
Трудно назвать другое научное открытие, которое так быстро нашло бы столь замечательное практическое приложение, как это было с открытием Герцем волнообразного распространения электричества в диэлектриках.
Давно уже было теоретически установлено, что электрическая энергия, подобно световой, и с той же скоростью как свет, от которого она отличается только большею длиною волн, распространяется в гипотетическом (предполагаемом) эфире, заполняющем все мировое пространство, свободное от вещества, проще сказать, в пустоте.
Герц опытным путем доказал существование таких длинных волн, а русский ученый Попов и итальянский инженер Маркони независимо друг от друга использовали эти волны для сигнализации на расстояния прямо через воздух (воду, землю и другие непроводники тока) без какого бы то ни было механического соединения станций, подающей и принимающей сигналы.
Это был момент появления на свет беспроволочного телеграфа, изобретение замечательное, но которому широкая публика могла лишь удивляться, не принимая личного участия, в большинстве случаев, в его использовании.
Менее замечательное впечатление на неспециалистов произвело появление первых аппаратов для беспроволочного телефонирования, но зато тем более сильно оказалось оно, когда телефон без проводов стал доступен каждому желающему и когда мощные громкоговорители, установленные в людных местах, начали передавать речь и музыку, воспроизводимые за сотни и тысячи верст от них.
Радиотелефон или, проще, радио, вернее, станции, принимающие электрические волны и трансформирующие их в те же звуки, которыми эти волны были вызваны, стали модной новинкой. Устанавливать радиоприемники у себя сделалось такой же потребностью, какой в конце прошлого века была покупка граммофона и пополнение коллекции пластинок к нему с записью музыкальных и вокальных пьес.
Сейчас волна увлечения радиоприемниками уже спадает, установленные аппараты зачастую по неделям остаются бездействующими. Повторяется та же история, как в свое время с граммофонами, поначалу тоже день и ночь действовавшими без перерыва, а затем заброшенными и потерявшими всякий интерес.
Конечно, это относится только к широким кругам публики, следовавшей моде, возникшей на радиоприемники, истинные же любители радиотехники не только не охладели к своим приемным установкам, но и стараются дополнить их собственными отправите льными станциями.
Недавно подмеченная возможность передавать речь и музыку сравнительно простыми по устройству маломощными любительскими станциями на расстояния, не уступающие расстояниям передач громадными широковещательными станциями, устройство которых обходится в сотни тысяч рублей, дала новый толчок радиолюбительству.
Америка особенно богата такими любительскими отправительными станциями, и там уже становится «тесно в эфире»: станции своей работой мешают друг другу, и зачастую крайне важные сообщения, например просьбы о помощи, посылаемые гибнущим кораблем, не могут быть услышаны из-за работы любительских станций, передающих всякие пустяки всем и каждому, кто пожелает тратить время на их выслушивание.
Удар молнии, искра, проскакивающая между кондукторами электростатической машины, разряд спирали Румкорфа, наконец, всякий переменный ток в проводнике возбуждают волнообразное движение вокруг места, где они происходят.
Это движение идет все дальше и дальше, как расходятся круги на воде от брошенного камня, и, дойдя до специальных приемников, настроенных на длину распространяющейся от станции отправления волны, возбуждает в них электрические колебания, действующие на телеграфный или телефонный аппарат.
Следует, впрочем, отметить разницу между волнами, передающими условные отрывочные сигналы телеграфа, и волнами, как бы несущими с собою человеческую речь, музыкальные мелодии и другие звуки.
Первые называются затухающими, вторые – незатухающими волнами.
Выясним это различие на примере. Бросьте камень в воду и, следуя завету Кузьмы Пруткова