Занимательная физика. Книга 1 — страница 5 из 28

е везти тележку под гору и почему?


Веревочные весы

Из веревок и картона нетрудно смастерить весы, которыми можно пользоваться даже для хозяйственных надобностей.

В горизонтальную полку вбейте два гвоздя на расстоянии полуаршина[6] один от другого. К ним привяжите концы крепкой двухаршинной бечевки, предварительно завязав узел строго посредине её длины. Теперь приготовьте из кусков картона «чашки», которые и подвяжите на бечевках на расстоянии 5–6 вершков[7] в обе стороны от узла. К полке прибейте кусок картона, на котором поставьте знак – стрелку, как раз против того места, где находится узел.

Теперь весы готовы. Когда «чашки» нагружены одинаково, узел приходится против стрелки. Если же какая-либо из чашек перетягивает, то средняя часть бечевки, отвечающая коромыслу весов, наклоняется в соответствующую сторону и тянет ту да же узел.


Рис. 19. Самодельные весы из веревок.


Чтобы наши веревочные весы действовали правильно, необходимо изготовить их чрезвычайно тщательно: гвозди должны быть на одной горизонтальной линии, узел должен быть строго посередине и т. д. Достичь этого трудно, поэтому мы объясним сейчас –

Как на неверных весах взвесить верно.

Не думайте, что если у вас имеются неверные весы, то с их помощью нельзя произвести верного взвешивания. Ничего нет легче, как взвесить верно на неверных весах. Надо только знать, как взяться за дело.

А дело очень просто. Положив предмет, подлежащий взвешиванию, на одну чашку весов, насыпайте на другую песку (или дроби) до тех пор, пока весы не придут в равновесие. Затем, сняв с чашки взвешиваемый предмет (песок не трогают), кладите на него гири до тех пор, пока весы снова не уравновесятся. Ясно, что теперь гири равны весу снятого с чашки предмета, так как предмет и гири вполне заменяют друг друга. Отсюда и название способа – «взвешивание заменой».

На пружинных весах, имеющих только одну чашку, этот простой прием также вполне применим. Здесь нет надобности запасаться песком или дробью. Положите взвешиваемую вещь на чашку и заметьте, у какого деления остановится указатель. Затем, сняв вещь с безмена, по ставьте на чашку столько гирь, сколько надобно для того, чтобы указатель остановился у того же деления. Вес этих гирь, очевидно, должен равняться весу вещи.

Так как пружинные весы часто портятся, то мы советуем всегда применять этот прием, который дает верный результат даже на неверных весах. Он пригоден, конечно, для проверки всякого рода иных весов, будут ли это весы с коромыслом, весы столовые, безмен и т. д.

Если, покупая товар в магазине, вы сомневаетесь в правильности весов, заставьте продавца перевзвесить еще раз по только что описанному способу – и недовес, если он был, сразу скажется. Разумеется, при этом мы полагаем, что в вашем распоряжении имеются вполне верные гири.

Как взвешивать, не имея гирь?

Гири далеко не всегда оказываются под руками, и потому всякому полезно запомнить, что за неимением гирь можно с успехом пользоваться… деньгами! В самом деле, монеты чеканятся вполне определенного веса, и зная это, можно в случае нужды (разумеется – не денежной) обходиться без гирь. Кто читал роман Жюля Верна «Гектор Сервадак», тот знает, какую услугу в этом отношении могут оказать французские деньги. Но многим неизвестно, что для тех же целей можно употреблять и русские деньги.

Для русских мер нужно пользоваться медными монетами. Достоинство их находится в очень простом отношении к нашей весовой единице, а именно: на пуд[8]идет 50 рублей медной монеты современного образца. Отсюда уже легко вывести, что на фунт идет медной монеты на 125 копеек. При этом безразлично, возьмете ли вы 25 пятаков, 125 отдельных копеек или со ставите какие-либо иные комбинации из монет 5-ти, 3-х, 2-х и 1-копеечного достоинства, так как вес медных монет пропорционален их достоинству. Один лот[9] до вольно близко отвечает весу 4 копеек.

Для мер французских (граммов), которые часто указываются в научных сочинениях, физик-любитель может пользоваться нашей серебряной монетой, зная, что

серебряный рубль весит ровно…… 20 граммов

серебряный полтинник весит ровно…… 10 граммов

серебряный четвертак весит ровно…… 5 граммов.


Что же касается мелкой серебряной разменной монеты (20, 15, 10 и 5 коп.), то вес её не пропорционален достоинству, так как она чеканится из сплава более низкой пробы, чем полноценная. Не мешает запомнить, на всякий случай, что серебряный пятачок весит 0,9 грамма, т. е. немногим меньше грамма.

Этих данных достаточно, чтобы с удовлетворительной точностью производить взвешивания в русских и французских мерах. Нужно только избегать пользоваться слишком потертой монетой.

Вечное движение

Один средневековый ученый предлагал устроить колесо, которое само вертелось бы, без всякой посторонней силы, и при том вечно.

На рис. 20 изображен его самодвижущийся механизм. К краям зубчатого колеса прикреплены откидные палоч ки с грузами на концах. При всяком положении этого колеса грузы на правой его стороне будут откинуты дальше от центра, нежели на левой; эта половина, следовательно, будет перевешивать и увлекать колесо во вращательное движение.


Рис. 20. Будет ли это колесо вертеться само собой?


Казалось бы, такое колесо должно вращаться вечно, – по крайней мере, до тех пор, пока не перетрется его ось. А между тем, если вы смастерите этот двигатель, то убедитесь, что он и не думает двигаться.

В чем же дело?

Очень просто: грузы на левой стороне, действительно, дальше от центра – но это преимущество уничтожается тем, что самое число их зато гораздо меньше. Взгляните на рисунок: налево всего два шарика, а направо чуть не целых пять… Оттого-то наш двигатель и не трогается с места.

Уже более полувека, как доказано, что невозможно построить механизм, который вечно двигался бы сам собой. Поэтому не стоит и ломать голову над такой безнадежной задачей. Все равно ни до чего не додуматься. А в прежнее время, особенно в средние века, люди немало таки потратили времени и труда на изобретение «вечного движения» – perpetuum mobile по-латыни. Это казалось им еще более заманчивым, чем искусство делать золото из дешевых металлов.

У Пушкина в «Сценах из рыцарских времен» выведен такой мечтатель в лице Бертольда:

«– Что такое perpetuum mobile? – спрашивает Мартын.

– Perpetuum mobile – отвечает ему Бертольд, – есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому… Видишь ли, добрый мой Мартын, делать золото – задача заманчивая, открытие, может быть, любопытное и выгодное, но найти perpetuum mobile… О!..»

Выдумали целые сотни и тысячи «вечных двигателей» – но все они не двигались долее четверти часа. В каждом случае, как и в нашем примере, изобретатель упускал из виду какое-нибудь обстоятельство, которое и разрушало все его планы.

«Чудо – и не чудо»

Чертеж, который изображен на восьмой странице нашей книги, взят из сочинения Стевина, ученого XVII века. Этот бельгийский математик сделал много важных открытий, которыми мы теперь постоянно пользуемся; так, он изобрел десятичные дроби, ввел в алгебру употребление показателей, открыл гидростатический закон, впоследствии вновь открытый Паскалем. Между прочим, Стевин открыл также за кон равновесия сил на наклонной плоскости – и, с помощью прилагаемого чертежа (см. рис. 21), доказал этот закон чрезвычайно остроумным способом.


Рис. 21. Два шара уравновешивают четыре.


Здесь перед нами действительно как бы чудо. Через две сходящиеся под углом наклонные плоскости перекинута замкнутая цепь, которая, конечно, находится в равновесии – ибо нет причины ей приходить в движение. Но та часть этой цепи, которая полукругом свисает вниз, уравновешивается сама собой. Значит, обе остающиеся части цепи – те, что лежат на плоскостях, – должны уравновешивать одна другую. Получается как бы парадокс: два звена цепи уравновешивают четыре.

Но Стевин из этого «чуда» вывел важный закон механики. Он рассуждал так. Обе цепи – и длинная и короткая – весят различно: одна цепь тяжелее другой во столько же раз, во сколько раз длинная плоскость длиннее короткой. Отсюда прямо вытекает, что два тела, связанные шнуром, уравновешивают друг друга на наклонных плоскостях, если веса их пропорциональны длинам этих плоскостей. В том случае, когда короткая плоскость отвесна, вы получаете известный закон механики: чтобы удержать тело на наклонной плоскости, надо действовать в направлении этой плоскости силою, которая во столько раз меньше веса тела, во сколько раз длина плоскости больше ее высоты.

Глава IIIВращательное движение

Трудная задача

Обыкновенная бутылка с плоским дном затыкается наглухо пробкой с пропущенной через нее вязальной спицей, на которую надет небольшой пробковый кружок (см. рис. 22, на правой стороне). Спица не должна доходить вплотную до дна, а отстоять от него приблизительно на вершок. Пробку, на саженную на спицу, лучше всего взять от горчичной банки; отверстие в пробковом кружкé должно быть достаточно велико, чтобы он свободно мог скользить по спице. В бутылку до половины наливают воды, так что кружок будет лежать на её поверхности.

Теперь предлагается задача: не раскупоривая бутылки, снять кружок со спицы.


Рис. 22. Как снять кружок со спицы, не раскупоривая бутылки?


Дело оказывается мудреным, сколько ни наклонять, ни переворачивать бутылки, пробковый кружок не сойдет с проволоки, так как не опустится при этом ниже конца спицы.

Дав непосвященному достаточно помучиться и повозиться над разрешением головоломной задачи, вы, наконец, открываете ларчик очень просто. Быстро вращая бутылку вокруг вертикальной оси, вы образуете внутри неё маленький водоворот; поверхность воды приобретает форму воронки, края которой высоко поднимаются вверх, а нижняя часть опускается, освобождая конец спицы. При этом пробка сама соскальзывает со спицы и всплывает вверх – что и требовалось доказать.