Рис. 25. Если вы хотите подбросить шляпу так, чтобы удобно было ее поймать – сообщите ей вращение (вокруг вертикальной оси).
Рис. 26. Ядро, вылетевшее из нарезного канала пушки, вращается вокруг своей продольной оси (АА) и поэтому во все время полета остается параллельным самому себе.
Новое решение Колумбовой задачи
Колумб решил свою задачу о том, чтобы поставить яйцо, чересчур уж просто: надломил скорлупу.
Такое решение, в сущности, неверно: надломив скорлупу яйца, Колумб изменил его форму и, следовательно, поставил не яйцо, а другое тело; ведь вся суть здесь в форме яйца – изменяя форму, мы тем самым как бы заменяем его другим телом. Колумб дал решение задачи не для того тела, для которого оно искалось.
А вы можете решить задачу великого мореплавателя, нисколько не изменяя формы яйца, если воспользуетесь свойством волчка; для этого достаточно только привести яйцо во вращательное движение вокруг его длинной оси, и оно будет, не опрокидываясь, стоять некоторое время на тупом или даже на остром конце. Как это сделать – показывают рисунки 27 и 28: яйцу придают вращательное движение, быстро перекатывая его между пальцами. Отняв рýки, вы увидите, что яйцо продолжает еще некоторое время вращаться стоймя: задача Колумба решена!
Рис. 27. Как поставить яйцо, не надламывая его.
Рис. 28. Решение задачи Колумба: яйцо вращается стоймя.
Для опыта необходимо брать непременно вареные яйца[20]. Сколько бы вы ни старались, вам едва ли удастся заставить вращаться сырое яйцо, потому что внутренняя жидкая масса является в данном случае как бы тормозом. В этом, между прочим, состоит простой способ отличать сырые яйца от сваренных вкрутую – секрет, не известный многим хозяйкам.
Уничтоженная тяжесть
На рис. 29 изображен опыт, который, наверное, знаком вам: вращая достаточно быстро стакан с водой, как показано на рисунке, вы достигаете того, что вода не выливается из стакана даже в той части пути, где стакан опрокинут вверх дном.
Вероятно, для вас не составит затруднения объяснить причину столь странного на первый взгляд явления: центробежная сила, стремящаяся удалить вращающееся тело от центра, настолько велика в данном случае, что превышает силу тяжести – естественно, что вода не выливается.
Рис. 29. Вода не выливается из стакана, если заставить его достаточно быстро кружиться.
Напоминаю об этом общеизвестном опыте потому, что хочу предложить читателю задачу: с какою скоростью достаточно вращать стакан, чтобы развить центробежную силу, необходимую для успешности опыта?
Вычисление произвести совсем нетрудно, зная, что ускорение центробежной силы = v²/R, где v O скорость, а R – радиус круга. Мы хотим, чтобы это ускорение было не меньше ускорения, сообщаемого телу силою тяжести, т. е. не меньше 9,8 метра. Допустим для простоты, что длина веревки, на которой вращается наш стакан, равна 1-му метру. Тогда имеем равенство
из которого ясно, что искомая скорость вращения v = √9,8 = 3,14 метра в секунду. Так как длина окружности, описанной радиусом в 1 метр, равна 6,28 метра, то чтобы вода не вылилась, наш стакан должен делать полный оборот в 2 секунды. Подобная быстрота вращения вполне достижима, и опыт обыкновенно удается без труда.
Заметьте, что при таком вращении вес стакана все время меняется: в верхней части пути вес его совершенно уничтожается центробежной силой; зато внизу он удваивается, так как здесь центробежная сила прибавляется к нормальному весу тела.
Вы выступаете в роли Галилея
Одно время для любителей сильных ощущений устраивалось весьма своеобразное развлечение – так называемая «чертова качель». В сборнике научных забав Федо оно описано так:
«Качель подвешена к прочной горизонтальной перекладине, перекинутой через комнату на известной высоте над полом. Когда все сядут, особо приставленный к этому служитель запирает входную дверь, убирает доску, служившую для входа, и, заявив, что он сейчас даст возможность зрителям сделать небольшое воздушное путешествие – по-видимому, начинает легонько раскачивать качель. Вслед за тем он садится сзади качели, подобно кучеру в кэбах, или даже совсем выходит из залы.
Рис. 30. Что кажется пассажирам «чертовой качели».
Между тем размахи качели становятся все больше и больше; она, по-видимому, поднимается до высоты перекладины, потом переходит за нее все выше и выше – и, наконец, описывает полный круг. Движение ускоряется все больше и больше, и качающиеся, хотя по большей части уже предупрежденные, испытывают несомненные ощущения качания и быстрого движения; им кажется, что они несутся вниз головой в пространстве, так что невольно хватаются за спинки сидений, чтобы не упасть.
Но вот размахи начинают уменьшаться; качель не поднимается уже более на высоту перекладины, и еще через несколько секунд останавливается совершенно.
На самом же деле качель все время висела неподвижно, пока продолжался опыт, и, напротив, сама комната, с помощью очень несложного механизма вращалась вокруг зрителей или, лучше сказать, вокруг горизонтальной оси. Всякого рода мебель прочно прикреплена к полу или к стенам залы; лампа, припаянная к столу так, что она, по-видимому, легко может перевернуться, состоит из электрической лампочки накаливания, скрытой под большим колпаком. Служитель, который, по-видимому, раскачивал качель, давая ей легкие толчки, в сущности, сообразовал их с легкими колебаниями залы и делал только вид, что раскачивает. Вся обстановка способствует полному успеху обмана».
Секрет иллюзии, как видите, прост до смешного. И всетаки я убежден, что если бы теперь, уже зная, в чем обман, вы очутились на «чертовой качели» – вы неизбежно поддались бы той же иллюзии. Вы знали бы, что висите неподвижно, и, несмотря на это, все-таки чувствовали бы, что вас кружит вниз головой. Такова сила иллюзии! Помните стихотворение Пушкина «Движение»?
Движенья нет, – сказал мудрец брадатый[21],
Другой[22] смолчал – и стал пред ним ходить.
Сильнее бы не мог он возразить.
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день над нами солнце ходит,
Однако ж прав упрямый Галилей!
Среди ваших соседей по «качели», не посвященных в ее секрет, вы были бы своего рода Галилеем – только навыворот: Галилей доказывал, что небо неподвижно, а кружимся, вопреки очевидности, мы сами; вы же будете доказывать, что мы неподвижны, а вся комната вертится вокруг нас. Возможно, что вам пришлось бы при этом испытать и печальную участь Галилея: вам не поверили бы, вас осыпали бы насмешками, как человека, спорящего против самых очевидных вещей…
Мой спор с вами
Вот вам задача: вообразите, что вы в самом деле очутились в «чертовой качели» и хотите доказать своим соседям, что они заблуждаются. Не думайте, что это будет очень просто. Я предлагаю вам вступить со мной в этот спор. Сядем вместе с вами в «чертову качель», дождемся момента, когда, раскачавшись, она начнет, по-видимому, описывать полные круги, и заведем ученый диспут о том, что кружится: качель или вся комната? Прошу только помнить, что во время спора мы не должны покидать качели; все необходимое захватите с собой, пожалуйста, заблаговременно.
Вы. Как можно сомневаться в том, что мы неподвижны, а вертится комната! Ведь если бы нашу качель опрокинуть вверх дном, то мы с вами не повисли бы вниз головой, а выпали бы из нее. Но мы, слава Богу, не падаем. Значит, вертится комната, а не качель.
Рис. 31. Что происходит на самом деле.
Я. Однако, вспомните, что вода из быстро кружащегося стакана не выливается, хотя при вращении он и опрокидывается вверх дном (рис. 29). Велосипедист в «чертовой петле» (см. далее) также не падает, хотя и едет вниз головой. И воду, и велосипедиста удерживает центробежная сила. Быть может, и мы вращаемся с такой скоростью, что центробежная сила уничтожает нашу тяжесть.
Вы. Но мы легко можем вычислить центробежную силу и убедиться, достаточна ли она, чтобы уничтожить силу тяжести. Зная наше расстояние от оси вращения и число оборотов в секунду, мы легко определим по формуле…
Я. Не трудитесь вычислять. Владелец «чертовой качели», зная о нашем споре, предупредил меня, что число оборотов будет вполне достаточно, чтобы явление объяснялось по-моему. Следовательно, вычисление на этот раз ничего не докажет: каждый из нас в праве будет оставаться при своем мнении.
Вы. Но я еще не потерял надежду вас переубедить. Видите, вода из этого стакана не выливается на пол… Впрочем, вы и тут сошлетесь на центробежную силу. Хорошо же: вот отвес – он все время направлен к нашим ногам, т. е. вниз. Если бы вертелись мы, а комната оставалась неподвижной, отвес был бы все время обращен к полу, – т. е. вытягивался бы то к нашим головам, то в стороны.
Я. Ошибаетесь: если бы мы вертелись с достаточной скоростью, – именно так, чтобы центробежное ускорение превышало ускорение тяжести, – отвес все время был бы натянут вдоль радиуса вращения, т. е. к нашим ногам. Это мы и наблюдаем.
Вы. Ну, вот вам, наконец, решающий опыт: я роняю свой портсигар за борт нашей качели, и он падает – прямо в потолок! Ясно, что потолок очутился на месте пола, потому что предметы, сколько известно, вверх не падают.
Я. Опять вы забыли о центробежной силе! Ведь она может преодолеть силу тяжести. Следовательно, ваш портсигар вовсе не должен был упасть непременно на пол: центробежная сила может отбросить его, вопреки силе тяжести, и на потолок и на стены.