Вы. Если так, то я вас поймал вашей центробежной силой. Вы говорите, что комната не вертится, да? Почему же, в таком случае, мой портсигар продолжает спокойно лежать на потолке, а не падает с него на пол?
Я. Меня тоже удивляет, что портсигар, уроненный вами на потолок, так и остался лежать на нем. Но если бы вы были правы, т. е. если бы комната вертелась вокруг нас, – портсигар должен был перекидываться с потолка на пол и на стены.
Вы. Но позвольте: ведь это и доказывает, что комната вертится: портсигар удерживается на потолке тою же центробежною силою, которая так долго помогала вам оспаривать меня.
Теперь она заговорила в мою пользу!
Я. Да, но уверены ли вы, что и пол и, потолок, и все стены не покрыты слоем липкого клея, удерживающим упавшие на него вещи? Любезный владелец «чертовой качели», зная о нашем споре, конечно, предусмотрел это и позаботился о том, чтобы спор затянулся подольше. Как видите, и этот довод пока ничего еще не доказывает.
Финал нашего спора
Теперь позвольте посоветовать вам, как одержать победу в этом споре. Надо взять с собой на «качель» пружинные весы, положить на их чашку гирю, например в 1 фунт, и следить за положением указателя: он все время будет показывать один и тот же вес, именно – один фунт. Это и есть бесспорное доказательство неподвижности качели.
В самом деле: если бы мы вместе с пружинными весами описывали круги около оси, то на гирю, кроме силы тяжести, действовала бы также центробежная сила, которая в нижних точках нашего пути прибавлялась бы к весу гири, а в верхних – отнималась бы от него; мы должны были бы замечать, что гиря то становится тяжелее (вдвое с лишним), то почти ничего не весит. А раз этого не заметно, значит – вращается комната, а не мы.
В заколдованном шаре
Один предприниматель (конечно, американец) устроил для развлечения публики очень забавную и даже поучительную карусель в форме шарообразной вращающейся комнаты. Люди внутри ее испытывают такие необыкновенные ощущения, какие мы считаем возможными разве только во сне или в волшебной сказке.
Чтобы понять устройство этого заколдованного шара, вспомним сначала, что испытывает человек, стоящий на быстро вращающейся круглой платформе. Центробежная сила, развивающаяся при ее вращении, стремится отбросить человека наружу; чем дальше вы стоите от центра, тем сильнее будет клонить и тянуть вас наружу. Если вы закроете глаза, вам будет казаться, что вы стоите не на ровном полу, а на наклонной плоскости, на которой с трудом сохраняете равновесие. Это станет понятно, когда рассмотрим, какие силы действуют здесь на ваше тело (рис. 32). Центробежная сила тянет вас горизонтально; тяжесть – тянет вниз; обе силы, складываясь по правилу параллелограмма, дают равнодействующую силу, которая тянет тело наклонно вниз. Чем быстрее вращается платформа, тем больше становится эта равнодействующая и направляется более отлого.
Рис. 32. Что испытывает человек на краю вращающейся платформы. (Платформа изображена в разрезе.)
Представьте же себе теперь, что край платформы загнут вверх, и вы стоите на этой наклонной, отогнутой части. Если платформа неподвижна, вы в таком положении не удержитесь, а сползете или даже опрокинетесь. Другое дело, если платформа вращается: тогда эта наклонная плоскость станет для вас, при известной скорости, как бы горизонтальной, потому что равнодействующая веса и центробежной силы направится тоже наклонно, под прямым углом к отогнутой части платформы[23].
Рис. 33. Человек спокойно стоит на наклонной части вращающейся платформы.
Легко понять, что чем центробежная сила больше, тем под бóльшим углом должна быть наклонена платформа, чтобы находящийся на ней человек не упал, – и наоборот. Центробежная же сила, как известно, возрастает с удалением от оси. Если вращающейся платформе придать такую кривизну, чтобы при определенной скорости угол наклона ее поверхности в каждой точке соответствовал направлению равнодействующей, то помещенный на ней человек будет чувствовать себя во всех ее точках, как на горизонтальной плоскости. Математическим вычислением найдено, что такая кривая поверхность есть внутренняя поверхность особого геометрического тела – параболоида. Эту поверхность можно получить, если быстро вращать вокруг своей оси стакан, до половины налитый водою: тогда вода у краев поднимется, а в центре опустится, и поверхность ее примет форму параболоида.
Рис. 34. Велосипедист, едущий по наклонной круговой дорожке, удерживается в равновесии центробежной силой.
Если вместо воды в стакан налить растопленный воск и продолжать вращение до тех пор, пока воск не остынет, то затвердевшая поверхность его даст нам точную форму параболоида. При известной скорости вращения такая поверхность является для тяжелых тел как бы горизонтальной: шарик, положенный в любую ее точку, не скатывается вниз, а остается в равновесии (рис. 35).
Теперь легко будет понять устройство заколдованной сферы. Дно ее (см. рис. 36) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя вращение, благодаря скрытому под платформой механизму, совершается чрезвычайно плавно, но все же люди на платформе испытывали бы головокружение, если бы все окружающие предметы не перемещались вместе с ними. Чтобы избежать этого и не дать возможности наблюдателю догадаться, что он движется, вращающуюся платформу помещают внутри большого шара, непрозрачные стенки которого движутся с такою же скоростью, как и сама платформа.
Рис. 35. Если этот бокал вращать с надлежащей скоростью, то шарик не скатится на его дно: равнодействующая (R) силы тяжести (Р) и центробежной силы (С) будет прижимать шарик к стенке.
Рис. 36. Истинное положение людей внутри «заколдованного шара».
Таково устройство «волшебной сферы». Что же испытываете вы, находясь на платформе, внутри сферы? Когда сфера вращается, пол под ногами кажется вам горизонтальным, в какой бы точке кривой платформы вы ни находились – у оси, где пол действительно горизонтален, или у края, где он наклонен на 45 градусов. Если вы перейдете с одного края платформы на другой, то вам покажется, будто весь огромный шар, с легкостью мыльного пузыря, перевалился на другой бок под тяжестью вашего тела: ведь вы во всякой точке чувствуете себя, как на горизонтальной плоскости! Положение же других людей, стоящих в наклонном положении, должно представляться вам до крайности необычайным: вам буквально будет казаться, что люди, как мухи, ходят по стенам.
Вода, вылитая на пол заколдованного шара, растеклась бы ровным слоем по его кривой поверхности. Людям казалось бы, что вода стоит перед ними наклонной стеной…
Еще более удивительные эффекты может создать велосипедист, катающийся внутри этой сферы. Если он станет быстро кружиться на платформе в направлении ее вращения, то развиваемая им центробежная сила присоединится к центробежной силе сферы; вследствие этого, велосипед приобретает такую устойчивость, что может, не опрокидываясь, въезжать на внутренние стенки сферы и кружиться по ним параллельно краям пола. Наблюдателям же на краю платформы будет казаться, что он катится по потолку! Привычные представления о законах тяжести словно отменяются в этом поистине заколдованном шаре, и мы переносимся в сказочный мир чудес…
Рис. 37. Что представляется человеку, находящемуся внутри «заколдованного шара».
«Чертова петля»
Так называется головокружительный велосипедный трюк, нередко исполняемый в цирках: велосипед едет по спирали снизу вверх и описывает полный круг, несмотря на то, что по верхней части круга ему приходится катиться вниз головой. На арене устраивают деревянную дорожку в виде петли с одним или несколькими завитками, как изображено на наших рисунках. Артист съезжает на велосипеде по наклонной части петли, затем быстро взлетает на своем стальном коне вверх, по круговой ее части, совершает полный оборот, буквально вися вниз головой, и благополучно съезжает на землю. Теперь этот цирковой трюк довольно обычен, но лет 60–70 тому назад он был еще новинкой. Мы приводим здесь старинную афишу одного лондонского цирка, относящуюся к 40-м годам прошлого века – едва ли не первое объявление о «чертовой петле» (рис. 38).
Этот головоломный велосипедный фокус кажется зрителям верхом акробатического искусства. Озадаченная публика в недоумении спрашивает себя: какая таинственная сила удерживает смельчака вниз головой? Недоверчиво настроенные готовы подозревать здесь ловкий обман – какие-нибудь искусно скрытые веревки, поддерживающие велосипедиста, или что-нибудь в этом роде.
Рис. 38[24]. Самое старое объявление о «чертовой петле». Английская афиша 40-х годов прошлого века.
«Чертова петля» изображена на рисунке неправильно – с такой петли тележка неминуемо должна сорваться. Почему?
Между тем, в этом фокусе нет ничего сверхъестественного. Все объясняется законами механики.
Никакого особенного умения или знания какого-либо секрета от артиста не требуется: бильярдный шар, пущенный по этой дорожке, с не меньшим успехом выполнил бы тот же фокус. На старинном рисунке английской афиши вы видите не велосипед, а простую тележку, скользящую по рельсам.
Наш читатель, конечно, догадывается, какая сила уничтожает здесь вес велосипедиста и его стального коня и прижимает его вниз головой к дорожке «чертовой петли». Это все та же центробежная сила, которая уже объяснила нам несколько загадочных явлений. Однако фокус удается не всегда: необходимо в точности рассчитать высоту, с которой велосипедист должен начать свое движение – иначе центробежная сила может оказаться не достаточной для уничтожения его веса, и тогда фокус может кончиться очень печально.