Создалась живая клетка; сложные молекулы стали строиться из сотен и тысяч отдельных атомов; и как высшая форма еще не разгаданной химической системы появились белковые вещества, создавшие все многообразие, всю сложность и загадочность окружающего нас органического мира.
Но в истории нашей природы атом всегда мечется в поисках новых форм. Мы не можем еще сказать, нет ли новых, других форм равновесия, более устойчивых, чем кристалл, или более активно заряженных энергией, чем живое вещество. Все наши представления об окружающей нас природе наталкиваются на недостаточность наших знаний новых путей атома, и никто не решится сказать, что мы уже постигли все пути его странствований и что человек уже овладел теми могучими силами, которые он мог бы развязать в атомном клубке[63].
Атомы в воздушной стихии
Что такое воздух? Как мало мы себе представляем воздух, как мало мы даже интересуемся этим вопросом! Мы привыкли, что воздух нас окружает, и, как здоровье, начинаем ценить его только тогда, когда теряем его, когда попадаем в условия, где воздуха не хватает.
Мы знаем, как трудно дышится на больших высотах, как у некоторых уже на высоте трех километров появляется горная болезнь, начинается слабость; мы знаем, как страдают летчики, когда они поднимаются на самолетах выше пяти километров; на высоте восьми и десяти километров воздуха уже определенно не хватает и приходится прибегать к помощи имеющихся на самолете запасов кислорода.
Мы знаем, как тяжело опускаться в глубины рудников, как долго звенит в ушах, пока на глубине 1500 м вы освоитесь с новым давлением воздуха.
Воздух сейчас представляет одну из интереснейших проблем не только для науки, но и для химической промышленности.
Долгое время человек никак не мог понять, что такое воздух. В течение нескольких веков в первобытной химии господствовало убеждение, что воздух состоит из особого газа — флогистона и что когда какое-либо вещество горит, то из него выделяется флогистон и заполняет, как особая тонкая материя, весь мир.
Потом, благодаря гениальному открытию французского химика Лавуазье, сделалось ясно, что воздух состоит в основном из двух веществ — одного живительного, которое было названо кислородом, и другого, равнодушного к жизни, получившего поэтому имя «азот» (по-гречески — безжизненный).
В 1894 году было обнаружено, что состав воздуха гораздо сложнее, что кроме кислорода и азота, этого безжизненного газа, он содержит в себе целый ряд других химических элементов, которые играют в нем большую роль.
И современные химики определяют состав воздуха по весу в следующем виде:
Но этот состав характерен только для нижних слоев атмосферы. Выше 20 км количество газов начинает изменяться: количество тяжелых газов уменьшается, легких — увеличивается. Постепенно растет содержание водорода, гелия, а где-то высоко, там, где сверкают метеоры, где рассеянные частицы создают северное сияние, там, по-видимому, преобладают легкие газы.
Сейчас мы настолько точно знаем состав воздушного океана, что каждая капелька, рассеянная в кубическом метре его, не ускользает от внимания наших химиков.
И вот оказывается, что окружающий нас газовый океан не только основа всей нашей жизни, но и основа новой, грандиозной промышленности.
Англичане за последние годы подсчитали, что все население Англии и Шотландии за сутки поглощает до 20 млн м3 кислорода из воздуха, а специальные установки за этот же срок извлекают до 1 млн м3 этого газа для нужд промышленности.
Одновременно с этим промышленность сжигает уголь и нефть, потребляя кислород, и возвращает в атмосферу грандиозное количество углекислоты. Тот же процесс происходит и в живых организмах. Например, человек каждый день выделяет около трех литров углекислоты.
Чтобы понять значение этой цифры, достаточно указать, что большое дерево эвкалипт в течение одного дня может разложить углекислоту и вернуть свободный кислород атмосфере примерно в количестве одной трети количества углекислоты, выдыхаемой человеком. Следовательно, три крупных эвкалипта разложат столько углекислоты, сколько выделит один человек, и таким образом восстановят равновесие состава атмосферы.
Из этого мы видим, как велико значение той растительности, которая окружает нас и которую мы так бережно храним и насаждаем в наших городах. Жизнь растений является единственным источником восстановления кислорода, поглощаемого человеком. А между тем кислород начинает использоваться все в больших и больших количествах.
В 1885 году маленькие заводы по изготовлению перекиси бария впервые положили начало промышленному использованию кислорода воздуха.
Сейчас кислород воздуха служит основой для целого ряда химических производств; в металлургии вместо воздуха в доменные печи вдувается чистый кислород; в ряде химических производств кислород является незаменимым окислителем.
С каждым годом растут все новые и новые установки, которые через жидкий воздух извлекают кислород из окружающей нас атмосферы.
Наравне с кислородом все шире и шире начинают использоваться человеком и другие газы.
Еще недавно аргон, входящий в состав воздуха в количестве 1 %, не играл никакой роли в промышленности. Сейчас при помощи сложных установок из воздуха извлекают ежегодно около одного миллиона кубических метров этого редчайшего газа.
Многие из нас не знают, что каждый год этим газом наполняют свыше одного миллиарда электрических лампочек.
В светящихся рекламах больших городов в специальных лампочках с каждым годом все шире и шире используется и другой благородный газ воздуха — неон. Его очень мало в воздушном океане — одна часть приходится на 55 тысяч частей воздуха. Но все же неоновая промышленность развертывается и растет с каждым годом.
Начинают извлекать из воздуха и гелий. Его еще меньше, чем неона, хотя в атмосфере над каждым квадратным километром Земли содержится около 20 т этого ценнейшего газа Солнца. Гелий извлекается из воздуха и главным образом из подземных газовых струй и используется для наполнения дирижаблей; в холодильной технике с его помощью получают самые низкие температуры в мире.
В нашу промышленность начинают входить даже самые редкие газы, как криптон и ксенон.
Криптона в воздухе меньше одной тысячной процента. А между тем как важно было бы получать его в больших количествах, ибо тогда на 10 %, а при применении ксенона на 20 %, повысилась бы яркость наших электролампочек. А это значит, что на 20 % понизилось бы потребление электроэнергии нашими осветительными установками[64].
Но, конечно, самым важным сырьем для промышленности, извлекаемым из воздуха, является азот.
В 1830 году впервые была сделана попытка использовать азотные соединения для удобрения полей.
Об азоте воздуха тогда никто не думал, и даже прибывавшая на судах из Чили селитра не всегда находила себе применение на бедных полях Западной Европы. Но постепенно развивавшаяся химизация сельского хозяйства требовала все больших и больших количеств тех трех живительных веществ, на которых строится химическая жизнь растения, — азота, фосфора и калия. Потребность в азоте стала так повышаться, что физик и химик Крукс в 1898 году предсказывал азотный голод и предлагал искать новые методы для извлечения азота из воздуха.
Прошло немного лет. При помощи электрических разрядов химики научились превращать азот воздуха в аммиак, азотную кислоту и цианамид.
Во время Первой мировой войны азот, нужный для производства взрывчатых веществ, сделался предметом многочисленных исследований. Сейчас во всем мире работает свыше 150 азотных заводов; они ежегодно извлекают из воздуха 4 миллиона тонн азота. Но и эта цифра оказывается ничтожной по сравнению с громадным запасом этого газа, составляющим примерно 81 % всего объема воздушной стихии.
Достаточно сказать, что все азотные установки мира каждый год извлекают примерно такое количество азота, которое содержится в столбе атмосферы над половиной квадратного километра земной поверхности. Так рисуются перед нами новые промышленные пути использования воздуха. Промышленность начинает все больше и больше использовать все составные части воздушного океана. Атмосфера превращается в грандиозный источник минерального сырья, запасы которого практически неисчерпаемы. Однако пока пути овладения этими запасами еще далеко не найдены.
Процессы, при помощи которых человек разделяет воздух на составные части, еще довольно несовершенны. Для извлечения азота требуются и большие давления, и громадное количество энергии. Для разделения благородных газов и получения кислорода надо прибегать к сложным, дорогим установкам, переводить воздух сначала в жидкое состояние, чтобы затем выделить отдельные газы. И вот на этом пути у нас в Советском Союзе сделаны блестящие открытия.
В Институте физических проблем Академии наук СССР построены новые, замечательные машины, которые позволяют очень тщательно разделять громадные количества воздуха на составные части.
А нам рисуются уже маленькие машинки, установленные в каждой комнате. Включим электрический ток — завертится трубодетандер; откроем кран, на котором будет стоять надпись: «Кислород», — и вместо воздуха из него потечет синеватая жидкость, охлажденная до минус 200°.
Откроем другой кран — из него по капелькам будет вытекать жидкий благородный газ криптон или ксенон, а где-то на дне, как зола в печках, будет накапливаться твердая угольная кислота, которая затем будет поступать под особый пресс и давать нам тот твердый сухой лед, который вы все видели у наших продавцов мороженого и который будет охлаждать наши помещения в жаркие дни.
Может быть, в этой картине я немного забежал вперед. Еще нет таких портативных машинок, которые можно было бы приключить к нашему штепселю, но я уверен, что недалеко то время, когда мы сможем использовать окружающие нас богатства воздуха для наших нужд, и грандиозная химическая промышленность будет построена на неисчислимых запасах азота и кислорода — двух элементов, выдающихся по своему значению в жизни Земли.