Бактерицидное действие ничтожных концентраций ионов серебра объясняется тем, что они вмешиваются в жизнедеятельность микробов на ферментном уровне. Соединяясь с тиольными группами аминокислоты цистеина, ионы серебра образуют меркаптиды: E–SH + Ag+ → E–S–Ag + H+ (здесь Е – белковая молекула фермента). Меркаптиды, располагаясь на активном центре фермента или рядом с ним, нарушают его пространственную конформацию и препятствуют нормальной работе; аналогично дейст вуют и ионы некоторых других тяжелых металлов, например меди или ртути, причем они намного токсичнее серебра.
(Кстати, термин «меркаптан» происходит от английского mercury capture – «связывание ртути».)
Однако, как это часто бывает, то, что полезно в малых дозах, губительно в больших. Не составляет исключение и серебро. Ионы серебра могут окислять биомолекулы. Кроме того, они образуют с белками нерастворимые комплексы, нарушая их структуру. Отравляющее действие крепких растворов растворимых солей серебра связано прежде всего с ожогами пищевода и желудка. К счастью, в теле человека через одну-две недели остается всего 0,02–0,1 % введенного серебра, остальное выводится из организма. Однако при многолетней работе с серебром и его солями может развиться необычное заболевание – аргирия (от лат. аrgentum – «серебро»). Дело в том, что при длительном поступлении в организм серебро способно медленно отлагаться в виде металла в соединительной ткани и стенках капилляров разных органов, в том числе в почках, костном мозге, селезенке. Накапливаясь в коже и слизистых оболочках, серебро придает им серо-зеленую или голубоватую окраску, особенно сильную на открытых участках тела, подвергающихся действию света. Изредка окраска может быть настолько интенсивной, что кожа напоминает кожу негров. Развивается аргирия очень медленно, первые ее признаки появляются через два-четыре года непрерывной работы с серебром, а сильное потемнение кожи наблюдается лишь спустя десятки лет. Раньше всего темнеют губы, виски и конъюнктива глаз, затем веки. Сильно могут быть окрашены слизистые оболочки рта и десны, а также лунки ногтей. Иногда аргирия проявляется в виде мелких сине-черных пятен. Отмечено несколько случаев аргирии при длительном лечении нитратом серебра, причем темнели только участки, подвергавшиеся лечению. Коллоидные препараты серебра, содержащие металл в основном в малоактивной нейтральной форме, не дают осложнений такого рода.
Раз появившись, аргирия не исчезает, а вернуть коже ее прежний цвет не удается. Если не считать чисто косметических неудобств, больной аргирией может не испытывать никаких болезненных ощущений или ухудшения самочувствия (если не поражены роговица и хрусталик глаза); в этом отношении аргирию можно назвать болезнью лишь условно. Есть у этой болезни и своя «ложка меда» – при аргирии не бывает инфекционных заболеваний: человек настолько «пропитан» серебром, что оно убивает все болезнетворные бактерии, попадающие в организм.
Огниво с платиной
Изобретение способа добывания огня было важнейшим шагом на пути развития человека. О важности огня свидетельствуют многие древние мифы, придающие огню божественное происхождение. Недаром Прометей, дав людям огонь, был за это жестоко наказан богами. Долгое время добывание и хранение огня было делом трудным и ответственным, а его утеря – настоящей трагедией (подобное описано, например, в антиутопии Татьяны Толстой «Кысь»). Первобытные люди добывали огонь трением. Затем вращающуюся палочку заменили креме́нь и трут. При ударе твердого камня – кремня о стальное огни́во (сталь мог заменить кусок распространенной руды – колчедан) сыпались искры, которые поджигали трут. Трут получали из грибных наростов на дубе или ясене. После вываривания в воде с золой полученную массу пропитывали раствором селитры; в результате трут легко загорался (вернее, начинал тлеть) от малейшей искры. При раздувании тлеющий трут мог поджечь сухую лучину. Такой способ добывания огня использовался в течение многих столетий, и даже в Европе – вплоть до середины XIX в.
В 1770 г. была изобретена электрическая зажигалка, в которой струя водорода воспламенялась от искры электрофорной машины. Такая зажигалка могла служить красивым демонстрационным экспериментом на лекции по электричеству, но никак не для бытовых целей.
Следующий прорыв в деле получения огня связан с открытием немецкого химика Иоганна Вольфганга Дёберейнера. Сначала он был аптекарем, что типично для многих химиков того времени, включая и знаменитого Шееле, затем владельцем фабрики, а с 1810 г. – профессором химии, фармации и технологии в Иене. Дёберейнер открыл реакцию образования серного ангидрида, впервые синтезировал муравьиную кислоту, изучил образование уксусной кислоты окислением винного спирта, чем способствовал развитию промышленного производства уксуса. Как один из предшественников Д. И. Менделеева, он открыл закон триад: если в триадах литий – натрий – калий, кальций – стронций – барий, сера – селен – теллур, хлор – бром – йод расположить элементы в порядке возрастания их атомных масс, то атомная масса среднего члена триады примерно равна полусумме крайних членов. Это правило было использовано в последующих работах по классификации химических элементов.
Одно из важнейших открытий Дёберейнера – каталитическая способность мелкораздробленной платины (платиновой черни) способствовать протеканию ряда химических реакций; при этом сама платина не претерпевает изменений. В 1821 г. он обнаружил, что платиновая чернь окисляет пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года он открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал водородное огниво – прибор, широко применявшийся для получения огня до изобретения спичек.
В 1860 г. голландский аптекарь Петрус Якоб Кипп сконструировал удобный аппарат для получения водорода, ныне носящий его имя. Эту конструкцию использовали и в водородном огниве: выходящую из аппарата струю водорода направляли на губчатую платину. Придя с ней в соприкосновение в присутствии воздуха, водород воспламенялся. Конечно, аппарат Киппа в карман не положишь; огниво могло быть только стационарным.
Каталитическая горелка Дёберейнера(слева): водород, получаемый действием серной кислоты на цинк, поджигается платиновым катализатором
Сейчас о водородном огниве знают только историки науки. Его быстро вытеснили спички, сначала опасные – фосфорные, потом безопасные – серные (раньше их называли шведскими по имени страны, где их впервые стали выпускать). Однако у спичек немало недостатков – они легко отсыревают, их пламя задувается ветром, на производство спичек тратится масса древесины, в производстве используется опасная бертолетова соль.
Альтернативой спичкам служит не менее распространенная зажигалка. Раньше зажигалки заправляли бензином. Бензин пропитывал фитиль, испарялся, и его пары поджигались искрой, получаемой от трения стального колесика о маленький цилиндрик, сделанный из специального сплава. Этот сплав изобрел австрийский химик Карл Ауэр фон Вельсбах, воспользовавшись пирофорностью его основного компонента – церия. Ауэр усилил пирофорность церия, сплавив его с другими металлами. Для кремней в зажигалке оптимальным оказался такой состав: церий – 66 %, железо – 25 %, лантан – 8 %, магний – 0,5 %, медь – 0,5 %. Зажигалки позволили сэкономить во всем мире бесчисленное количество спичек, а следовательно, и древесины. Бензиновые зажигалки со временем уступили место более удобным газовым. В них под небольшим давлением находится сжиженный газ (бутан или его смесь с пропаном). Даже в очень жаркую погоду давление паров над жидким бутаном не превышает 3 атм, и пластмассовый корпус зажигалки такое давление легко выдерживает. «Зажигательный» механизм в большинстве дешевых зажигалок оставался прежним: колесико и кремень. Но наиболее «продвинутые» конструкции обходятся без движущихся деталей: в них нет ни традиционного зубчатого колесика, ни кремня. Зажигание газа производится либо раскаляемой током тонкой нихромовой проволочкой, либо искрой, которая проскакивает между двумя электродами. В обоих случаях в зажигалке должен быть источник электричества – батарейка или (во второй конструкции) пьезоэлемент – кристалл, нажатие на который сопровождается накоплением заряда и искрой.
Сравнительно недавно венгерские изобретатели, вспомнив огниво Дёберейнера, сконструировали зажигалку нового типа: на выходе струи газа находится платиновая спиралька, которая катализирует реакцию горения. Пламя у новой зажигалки сильное и устойчивое, ему не страшен ветер. Таким пламенем можно не только поджечь сигарету, но и сварить при необходимости тонкую проволоку.
Химики разоблачают подделки
Когда картины великих художников начали цениться на вес золота, стали появляться во все возрастающих масштабах подделки. Конечно, подделать картину художника эпохи Возрождения несравненно труднее, чем написанную в начале ХХ в. Ведь при этом необходимо учитывать естественное старение основы, растрескивание лака, сложности техники старых мастеров и проблемы с красками (экспертиза легко отличит природный ультрамарин или пурпур от синтетического красителя). Тем не менее время от времени появляются великие фальсификаторы, настоящие мастера своего дела, разоблачение которых порой занимает не одно десятилетие. И в этом деле решающим фактором часто становится исследование картины с применением самых современных и точных физических и химических методов.
В настоящее время в распоряжении экспертов имеются разнообразные методы, не оставляющие никаких шансов фальсификаторам «древностей». Среди самых простых – давно используемые приемы фотографирования картин в ультрафиолетовых и инфракрасных лучах, рентгеновская фотография, да и обычный микроскоп может о многом рассказать специалисту. Например, размер частиц минеральных пигментов и их форма (а до начала XIX в. краски растирали вручную) могут оказаться характерными для данной школы или эпохи.