Занимательная химия для детей и взрослых — страница 45 из 55


Родившийся в Германии шведский биохимик Ганс Карл Август Симон фон Эйлер-Хельпин (1873–1964) был потомком знаменитого математика Леонарда Эйлера. Но прославился он в совсем другой области, исследовав механизм ряда биохимических процессов, в Марка, частности процессов спиртового брожения, за что и получил (совместно с А. Гарденом) в 1929 г. Нобелевскую премию. На посвященной лауреату шведской почтовой марке вместо портрета ученого изображена модель одной из исследованной им ферментативных реакций.

Марка, посвященная Эйлер-Хельпину


Следует обратить внимание, что среди химиков, проживших от 90 до 100 лет, 14 ученых (19,2 %, т. е. каждый пятый) были лауреатами Нобелевской премии! Но, конечно, совершенно неверен вывод, что потому-то они и получили высокую награду, что жили очень долго и успели многое сделать. Ведь большинство открытий делается в сравнительно молодом возрасте, а между достижением и его признанием нередко проходит немало лет. Так, Нобелевская премия Н. Н. Семенову была присуждена более чем через 30 лет после совершенного им открытия. И этот пример далеко не единственный. Петр Леонидович Капица, выступая в Стокгольме с нобелевской лекцией, сказал, что она присуждена ему за работы с жидким гелием, сделанные более 30 лет назад, поэтому он лучше расскажет о том, чем занят сейчас – плазмой и термоядерными реакциями…

Книга «Выдающиеся химики мира» была сдана в печать в июне 1990 г., а материал авторами собирался задолго до этого. С тех пор долгожителями стало немало химиков. В феврале 2007 г. отметил свой 90-летний юбилей американский кристаллохимик Герберт Аарон Хауптман. За определение кристаллических структур химических соединений Хауптман в 1985 г. получил Нобелевскую премию совместно с другим долгожителем – американским физикохимиком Дж. М. Карле (он родился в 1908 г.). В сентябре 2007 г. исполнилось 90 лет Джону Уоркапу Корнфорту (как отмечалось, он в 1975 г. также получил Нобелевскую премию). В этом же месяце исполнилось 94 года академику Иосифу Наумовичу Фридляндеру, специалисту в области металловедения, и 93 года Михаилу Гавриловичу Слинько, разработавшему принципы математического моделирования химических процессов.

В 2008 г. исполнилось 90 лет со дня рождения американского биохимика Артура Корнберга, нобелевского лауреата (1959 г., премия совместно с С. Очоа по физиологии и медицине за открытие механизма биосинтеза нуклеиновых кислот) и дважды лауреата Нобелевской премии английского биохимика Фредерика Сенгера (первая премия, 1958 г., за установление строения молекулы инсулина, вторая, 1980 г., совместно с У. Гилбертом, за установление нуклеотидной последовательности в молекулах нуклеиновых кислот). Таким образом, из семи упомянутых здесь химиков-долгожителей пятеро – нобелевские лауреаты!

Если же считать долгожителями тех химиков, упомянутых в биографическом справочнике, кто прожил более 80 лет, то таких будет, конечно, значительно больше – 328 (30,6 % – почти треть!). Отсюда следует, что быть химиком полезно для здоровья! Так что интенсивные занятия химией (как, впрочем, и другими науками) позволяют поддерживать бодрость и работоспособность в течение долгих лет, если работать в лаборатории не только с увлечением, но и аккуратно, выполняя все достаточно элементарные правила.

Глава 6Химия плюс физика

Физиков – меньшинство человечества.

Химиков – больше, но немного.

Всё остальное – мятется и мечется,

Ищет правильную дорогу.

Физики знают то, что знают,

Химики знают чуть поболе…

Борис Слуцкий. Физики и люди.

Деление природных явлений на химические и физические во многом условное. Трудно назвать химическую реакцию, которая не сопровождалась бы физическими явлениями – нагреванием или охлаждением, выделением света (а иногда и звука), перемещением вещества (и прежде всего атомов и молекул) в пространстве… Многие физические процессы тоже сопровождаются химическими превращениями, хотя это не всегда очевидно. Например, при тонком размельчении кристаллических соединений в них происходит разрыв химических связей, образуются активные частицы, что можно обнаружить с помощью чувствительных методов. Есть даже специальный раздел химии, изучающий реакции при трении твердых тел, – трибохимия (от греч. tribo – «растираю»). При сильном увеличении давления во многих веществах также могут протекать химические реакции, например полимеризация непредельных соединений. Практически невозможно разделить химические и физические явления в электрохимических процессах. В этой главе будет рассказано о нескольких явлениях, в которых тесно связаны химия и физика.

Какого это цвета?

Из многих загадок природы явления, связанные со светом, – одни из самых удивительных. Окружающий нас мир окрашен во все цвета радуги. Поразительно многообразно раскрашены цветы, бабочки, птицы. В осеннем лесу – сотни оттенков зеленого, желтого, красного. Но из всех животных лишь немногие воспринимают окружающий мир красочным, большинство же не различает цвета.

Окраска предметов возникает в результате избирательного поглощения красителем отдельных «цветов радуги» из смеси всех цветов, т. е. из белого света. В природе окрашенные вещества образуются или исчезают в результате множества химических реакций. Считается, что у каждого окрашенного вещества свой цвет и любой человек (если он не дальтоник) может достаточно уверенно определить этот цвет. Однако у каждого правила есть исключения.

Прежде всего, однозначно определяются только чистые (так называемые монохроматические – от греч. mono – «один» и chroma – «цвет») цвета, например цвет лазерного луча. Чистые цвета встречаются в жизни не так часто. Поэтому изобретено много слов, обозначающих различные оттенки: бирюзовый, лазоревый, вишневый, бежевый, каштановый, цвета морской волны, слоновой кости… А для непонятного грязноватого оттенка употребляют даже слово «серо-буро-малиновый». Кстати, деление видимого спектра на семь цветов – условное. Действительно, кто же видел в радуге все цвета – от красного до фиолетового? Почему же цветов в радуге именно семь? С древних времен число 7 почиталось как магическое. Возможно, это связано с тем, что в старину было известно всего семь металлов (золото, серебро, медь, железо, свинец, олово, ртуть), а также семь движущихся небесных тел (в отличие от так называемых неподвижных звезд), которые сопоставлялись с металлами: Солнце (золото), Луна (серебро), Меркурий (ртуть), Венера (медь), Марс (железо), Юпитер (олово) и Сатурн (свинец): «Семь металлов создал свет по числу семи планет». Как результат – масса пословиц и поговорок, в которых фигурирует семерка (попробуйте вспомнить хотя бы десяток из них).

Древние изображения на современных почтовых марках семи небесных тел, соответствующих им богов и алхимических знаков металлов


Человеческий глаз легко обмануть. Изданы специальные альбомы под названием «оптические иллюзии», в которых прямые кажутся кривыми и наоборот, более длинные отрезки – короткими, а круги – овалами и т. д. Иллюзии бывают и цветовые. Самая известная (в то же время самая удивительная) состоит в том, что смесь всех цветов спектра в определённой пропорции воспринимается нами как белый цвет. Всем известен бурый «цвет йода». На самом деле бурый цвет имеет не сам йод, а йодная настойка. Кристаллический йод имеет серый цвет, а его кристаллы обладают металлическим блеском. Пары́ йода фиолетовые; такой же цвет имеют растворы йода в так называемых инертных растворителях – четыреххлористом углероде, гексане (этот углеводород – один из компонентов бензина) и др. Растворы йода в бензоле или в спирте бурые из-за того, что йод образует с молекулами этих веществ комплексы. Если капнуть йодной настойкой на ломтик сырого картофеля или белого хлеба, появится синее окрашивание. Это – цвет комплекса йода с крахмалом. Такой же цвет и у дезинфицирующего вещества йодинола, которым полощут горло; в нем йод образует комплекс с поливиниловым спиртом – этот комплекс удлиняет воздействие йода, а также уменьшает его раздражающее действие.

Новозеландский преподаватель химии из Палмерстон-Норта (найдите этот город на карте!) Тревор Китсон любит озадачивать своих учеников таким трюком. Сначала он рассказывает им, что растворимость различных веществ зависит от полярности растворителя. Полярными называется растворители, молекулы которых несимметричны, причем разные их части имеют противоположные заряды. Например, вода – сильнополярный растворитель, поэтому в ней хорошо растворяются многие ионные соединения, например соли. В то же время неполярные симметричные молекулы серы S8 и белого фосфора Р4 в воде не растворяются.

Полярность определяет и возможность взаимного смешения двух жидкостей. Это подметили еще алхимики, сформулировав правило «подобное растворяется в подобном». Например, полярная вода не смешивается с неполярным гексаном. Гексан – очень легкая жидкость (плотность 0,65 г/см3), поэтому, если налить в один сосуд воду и гексан, слой гексана будет вверху. Но так как обе жидкости бесцветны, Китсон сообщает учащимся, что четкая граница между ними будет хорошо видна, если подкрасить воду перманганатом калия (это вещество часто называют «марганцовкой»). Он достает из картонной коробки две колбы – с гексаном и с красно-фиолетовым раствором перманганата, отливает из каждой понемногу в цилиндр и показывает, что нижний, водный слой, окрашенный в знакомый всем цвет KMnO4, отделен от бесцветного верхнего слоя гексана четкой границей. Оставив цилиндр на столе, он убирает колбы обратно в коробку и продолжает урок. Через некоторое время ему требуется повторить опыт. Снова из коробки достаются две колбы – с прозрачной и красно-фиолетовой жидкостью, которые наливаются во второй цилиндр. Но на этот раз окрашенный раствор почему-то оказывается наверху!

Китсон хватается за голову: «Да что же это такое! Почему мне так не везет? Вечно эти химикаты надо мной издеваются!». И лишь самые догадливые ученики понимают, что преподаватель их просто разыгрывает. Но в чем тут дело, они, конечно, объяснить не могут. Тогда Китсон добавляет в первый цилиндр воду из-под крана, а во второй – гексан. Результат тоже удивительный: в первом цилиндре увеличивается в объеме нижний, бесцветный слой (там и была вода), а во втором – верхний, окрашенный! Становится очевидным, что окрашенный слой во втором цилиндре – вовсе не водный раствор перманганата, а раствор в л