Небольшую путаницу, которая еще оставалась у Берцелиуса, устранил в 1860 году итальянский химик Станислав Канниццаро; собравшийся 3 сентября 1860 года в Карлсруэ Международный конгресс химиков принял систему относительных атомных масс, предложенную Канниццаро, и этот момент принято считать началом современной химии.
Мы приведем таблицу химических элементов и их атомных масс, принятую в настоящее время. Заметим только, что теперь в качестве единицы атомной массы уже больше не принимают массу атома водорода, как предлагал в свое время Дальтон.
Сейчас атомная единица массы (а.е.м.) выбрана так, чтобы масса атома самого распространенного изотопа углерода была в точности равна 12 а.е.м. Масса атома водорода оказалась при этом чуть больше 1 а.е.м.
В таблицах обычно указывают относительную атомную массу химического элемента — отношение массы атома элемента к атомной единице массы. Эта система единиц принята и в той таблице, которую мы приводим. Что касается указанных там же значков (символов) химических элементов, то они уже нисколько не похожи на кружки Дальтона. Берцелиус предложил — и это было принято огромным большинством химиков, а потом и всеми без исключения — применять в качестве значка химического элемента начальную букву или две буквы его латинского названия (например, водород обозначать буквой Н от латинского Hydrogenium, азот — буквой N от латинского Nitrogenium, железо — значком Fe от Ferrum, медь — Cu — от Cuprum, углерод — С от Carbo и т. д.). Когда нужно обозначить молекулу, то, если в ней есть несколько атомов одного и того же химического элемента, обозначение этого атома не повторяется, как это делал Дальтон, изображавший, молекулу углекислого газа в виде , а просто внизу приписывается цифра, указывающая число атомов; например, та же молекула углекислого газа, состав которой Дальтон случайно угадал правильно, пишется в виде СO2 (С — углерод, О — кислород), молекула воды записывается Н2O, молекула аммиака — NH3 и т. д. Упрямый Дальтон до конца жизни (он умер в 1844 году) не хотел принять обозначений Берцелиуса (как из того же упрямства он не хотел принять и его точных атомных масс, предпочитая свои, неточные). Ворча, он говорил, что легче изучить древнееврейский язык, чем понять что-нибудь в химических формулах Берцелиуса. Но мы можем наглядно убедиться в удобстве обозначений Берцелиуса на примере молекулы тростникового сахара, которая по системе Берцелиуса записывается формулой С12Н22О11 (12 атомов углерода, 22 атома водорода, 11 атомов кислорода); по Дальтону же пришлось бы нарисовать сорок пять кружков, двенадцать из них зачернить, а в двадцати двух поставить в середине точку. Обозначения Берцелиуса позволяют также легко записать в виде формулы и то, что происходит при химической реакции: это записывают обыкновенно в виде равенства, где слева стоит все, что было до реакции, а справа — все, что стало после реакции. Например, горение водорода в кислороде, дающее в результате воду, пишется в виде уравнения
2H2 + O2 = 2H2O
(две молекулы водорода и одна молекула кислорода дают две молекулы воды; заметим по поводу этой формулы, что обыкновенный водород состоит из молекул, содержащих каждая по два водородных атома, и подобным же образом кислород состоит из молекул, каждая из которых составлена из двух атомов кислорода). Горение черного пороха может быть представлено формулой
2KNO3 + S + ЗС = K2S + N2 + ЗСО2
(две молекулы калийной селитры, атом серы, три атома углерода, соединяясь, дают молекулу сернистого калия, молекулу азота и три молекулы углекислого газа).
Еще удобнее было бы (хотя, впрочем, это мало принято у химиков) вместо знака = писать стрелку →, отчетливее указывающую направление химического превращения; обе реакции, которые в виде примера были только что написаны, при этом приняли бы вид
2Н2 + O2→ 2Н2O,
2KNO3 + S + ЗС
→
К2S + N2 + 3CO2.
После всех этих предварительных разговоров и объяснений приводим таблицу ныне известных химических элементов и их атомных масс.
Не преувеличивая, можно сказать, что эта небольшая таблица, помещающаяся на одной-двух страницах, представляет концентрированный результат упорнейшего труда многих поколений химиков, со времен Берцелиуса и до наших дней. (Порядок, в котором в этой таблице расположены элементы, выбран не случайно: элементы расположены в порядке растущей атомной массы.)
Спросим себя, что же стало с гипотезой Праута, которая была основана на том, что атомные массы элементов — точные целые числа? Осталось ли что-нибудь от этой гипотезы? Увы, не только весьма точные современные числа не подтверждают мнения Праута о целочисленности атомных масс, но даже и первые измерения Берцелиуса показали, что не все атомные массы являются целыми числами.
Таблица химических элементов, их символов и атомных масс.
Примером может служить хлор, атомная масса которого равна 35,453 (в таблице Берцелиуса, составленной в 1826 году, атомная масса хлора 35,4). Поэтому гипотеза Праута в том виде, в каком он ее сформулировал, безусловно должна быть отброшена.
Заметим все же, просматривая нашу таблицу, что очень многие атомные массы, особенно в начале таблицы, весьма близки к целым числам, иногда в точности им равны, например, у фтора и углерода, а иногда отличаются от них меньше чем на 0,01, например, у водорода, гелия, азота, натрия и т. д. Это странное обстоятельство заставляет как будто отнестись с некоторым вниманием к гипотезе Праута, так как трудно себе представить, чтобы это могло быть результатом чистого случая, но тем не менее такие атомные массы, как у магния или хлора, не говоря уже о многочисленных элементах с большими атомными массами, все-таки принуждают отбросить предположение о том, что все атомы состоят из атомов водорода.
Поэтому в XIX столетии совершенно укрепилось и распространилось представление о том, что все тела в мире состоят из этих нескольких десятков сортов атомов, которые являются совершенно независимыми друг от друга основными элементами мироздания. Атомы вечны и неразрушимы и не могут превращаться друг в друга. «Даже когда Солнечная система распадется и на ее развалинах возникнут другие миры, атомы, из которых она состоит, останутся целыми и неизношенными», — так сказал в 1873 году в одной речи знаменитый английский физик Джеймс Клерк Максвелл, основатель современной теории электрического и магнитного полей. Из этой цитаты видно, как нераздельно властвовали в физике идеи Дальтона даже через несколько десятилетий после появления его «Химической философии».
И все же, несмотря на все это, среди физиков и химиков продолжало жить смутное убеждение в том, что между атомами различных химических элементов имеются какие-то связи, что эти атомы образуют какую-то естественную систему. Удивительно, что эта мысль была отчетливо сформулирована еще задолго до того, как стало известно, какие именно химические элементы существуют в природе. В 1786 году немец Н. Г. Марне напечатал книгу, озаглавленную «О числе элементов». В этой книге, мистической и странной, он выражает свое глубокое убеждение в том, что «от мельчайшей пылинки солнечного луча до святейшего серафима можно воздвигнуть целую лестницу творений» и что атомы химических элементов тоже являются ступенями этой лестницы. Марне продолжает: «Подобно тому, как каждый отдельный тон созвучен тому же тону октавой выше или ниже вследствие связи между числом колебаний струн, так же и определенные химические элементы („основные вещества“, как называет их Марне) могут по тем же причинам стоять в самом близком родстве друг с другом, несмотря на то, что в их естественной последовательности между ними находятся многие вещества: с этими веществами они так же не могут соединиться, как два тона не могут приятно звучать вместе, несмотря на свою близость, если они находятся в отношении секунды».
Джеймс Клерк Максвелл
Эта идея Марне не могла привести ни к каким последствиям, пока химические элементы не были в достаточной мере выделены и изучены. Но после того, как Канниццаро опубликовал (в 1858 году) свою таблицу атомных масс, стремление к естественной классификации химических элементов должно было принести свои плоды.
В 1863 году англичанин Дж. А. Ньюлендс, воспользовавшись атомными массами Канниццаро, нашел, что если расположить элементы в порядке возрастания их атомных масс, то такой список элементов естественно разлагается на октавы, то есть на строчки по семь элементов в каждой, где каждый элемент обладает большим сходством с одинаковым по номеру элементом предыдущей и последующей октав. Приведем первые три октавы Ньюлендса:
Н, Li, Be, В, С, N, О;
F, Na, Mg, Al, Si, Р, S;
Сl, К, Са, Сr, Ti, Mn, Fe.
Аналогия проявляется в том, что все элементы, стоящие на втором месте в своей октаве (литий, натрий, калий), являются так называемыми щелочными металлами, образующими соединения по одному и тому же типу, например дающими соли LiCl, NaCl, КСl; элементы, стоящие на третьем месте в октаве (бериллий, магний, кальций), являются так называемыми щелочноземельными металлами, дающими тоже похожие друг на друга, но уже иного типа соединения, например соли ВеС12, MgCl2, СаСl2. Фтор весьма похож по своей химической природе на стоящий под ним хлор, азот обнаруживает некоторые аналогии с фосфором, кислород — с серой и так далее. Заметим, впрочем, что все получается так хорошо и убедительно лишь в первых октавах Ньюлендса: в дальнейших октавах было гораздо больше путаницы, и в некоторых случаях для ее устранения Ньюлендс позволил себе отступить от принятого им плана и располагать элементы не совсем в порядке возрастания атомной массы. Так или иначе, эта предложенная Ньюлендсом классификация, являвшаяся конкретным воплощением старой идеи Марне, не имела никакого успеха среди химиков. Когда Ньюлендс попробовал рассказать о своей классификации химических элементов съезду английских естествоиспытателей, его почти не хотели слушать, и председатель химической секции съезда насмешливо спросил Ньюлендса, — а не пробовал ли он располагать химические элементы в порядке алфавита и не получалось ли и при этом каких-нибудь закономерностей.