Занимательная метеорология — страница 12 из 42

нетрудно по табличке найти, что оно должно было находиться в удалении около 24 км, т. е. примерно над Ленинградом. И действительно, в этот, день (16/V 1929 г.) над Ленинградом разразилась страшнейшая гроза, продолжавшаяся около 3 часов.


ОТЧЕГО ИДЕТ ДОЖДЬ?

Мы знаем, что облако есть собрание мельчайший водяных капель. Почему же они не падают вниз? Ведь вода тяжелее воздуха. И почему в некоторый момент они начинают падать, да еще в виде вовсе не мельчайших, а очень заметных капель дождя?

Дело в том, что капли начинают падать на землю только тогда, когда достигнут определенного размера. Всякое тело, падающее в воздухе, испытывает его сопротивление, но тяжесть пересиливает это сопротивление. Вес капли — если ее считать шариком — пропорционален объему, т. е. кубу радиуса; сопротивление же воздуха пропорционально поверхности шарика, т. е. квадрату радиуса. Если радиус очень мал, сила тяжести лишь немногим пересиливает сопротивление, и капельки хотя и падают, но чрезвычайно медленно; малейшее восходящее движение воздуха останавливает это падение. Мельчайшие капельки, по исследованиям Ассмана, имеют от 0,006 до 0,017 мм в диаметре; принимая даже размер в 0,02 мм, получим, что в 1 г воды содержится 240 миллионов таких капель!

По мере роста капель, падение их ускоряется; при диаметре 0,15 мм они уже падают сравнительно быстро, — начинается легкий моросящий дождь. При дальнейшем возрастании капель он переходит в более сильный.

Почему же дождевые капли растут?

Во-первых, даже при медленном падении капли в облаке, догоняя одна другую, сливаются. Во-вторых, если одна часть облака холоднее другой, в ней будет происходить более быстрое сгущение паров и получатся более крупные капли. В-третьих, на поверхность капель, в силу явлений поверхностного натяжения, оседают водяные пары из окружающего насыщенного воздуха; наконец, не последнюю роль играют здесь электрические явления.

Так или иначе, при известных условиях капли достигают того предельного размера, при котором они начинают быстро падать на землю; правда, при большой сухости воздуха они иногда успевают испариться по пути, не достигнув земной поверхности.



Рис. 37. Несколько оригинальных снежинок. По фотографиям Бентлея.


"ДОЖДЬ КАК ИЗ ВЕДРА"

Может ли дождь итти не каплями, а сплошными струями, как вылитый из ведра? И какой величины бывают самые большие дождевые капли?

Ботаник и физиолог Визнер произвел ряд опытов; но получить непрерывные струи дождя ему не удалось. Не удалось ему и получить капель весом более 0,268 г: самые большие капли при падении с высоты всего 22 м разрывались на две, причем первая, бóльшая, весила не более 0,2 г. Возможно, что при известных условиях можно получить капли и несколько крупнее, но нет сомнения, что сведения о тропических дождях сплошными потоками или о каплях чуть не в дюйм диаметром нужно отнести к области легенд. Наибольшая капля Визнера в 0,268 г весом имеет в диаметра всего 8 мм. Стало быть, "дождь как из ведра" это только дождь из очень крупных капель, который из-за их быстрого падения кажется нам сплошным.


НЕБЕСНАЯ ЛАБОРАТОРИЯ, ГДЕ ДЕЛАЕТСЯ СНЕГ

При температурах ниже 0° водяной пар сразу переходит в твердое состояние, и вместо капель получаются ледяные кристаллы. Основной кристалл воды имеет форму правильного шестиугольника. На вершинах такого шестиугольника осаждаются затем новые кристаллики, на них — новые, и так получаются те разнообразные формы звездочек-снежинок, которые хорошо знакомы жителям севера. Падая в облаках, звездочки смерзаются в снежные хлопья, увеличивающиеся по мере приближения к земле.

Французский воздухоплаватель Тиссандье имел случай наблюдать образование снега во время полета на воздушном шаре. Он поднялся однажды из Парижа во время сильного снега, падавшего большими хлопьями. По мере того, как он поднимался, хлопья становились меньше и, наконец, превратились в отдельные снежинки, А на высоте 2100 м он оказался в совершенно прозрачном воздухе, в котором носились мелкие снежные кристаллики, медленно падавшие и выраставшие при падении: это была настоящая лаборатория, где делается снег.


ЛЮБИТЕЛЬ СНЕЖНЫХ ДРАГОЦЕННОСТЕЙ

В Америке, в городе Вермонте, жил любитель-натуралист и фотограф Бентлей, который около 50 лет составлял своеобразную коллекцию фотографий снежинок, снятых под микроскопом. У него всего более 5000 таких снимков, причем среди них нет двух одинаковых! Он называл их "снежными драгоценностями", и действительно можно думать, что снимки его изображают бриллиантовые украшения, сделанные искуснейшим ювелиром. К нему и на самом деле постоянно обращались ювелиры и художники из области прикладного искусства, пользуясь его альбомами, как образцом для своих работ.

Бентлей умер в 1931 году. Незадолго до его смерти американское Бюро погоды издало атлас снежинок по его фотографиям, содержащий более 2500 снимков.

Снимать снежинки дело не легкое. Одно из самых больших затруднений оказывается в том, что на предметном стекле микроскопа, даже и в холоде, снежинка расплывается и теряет резкость очертаний. Американец хранил в тайне способ, которым пользовался, снимая снежинки; но наш соотечественник Сигсон в Рыбинске разгадал этот секрет, или сам нашел не худший способ. Оказывается, снежинки надо помещать не на стекле, а на тончайшей, почти паутинной, сетке из шелковинок, — тогда их можно снять во всех их деталях; сетка же потом заретушируется. Коллекция Сигсона не так богата, но снимки его не хуже, чем у американца.

В 1933 г. наблюдатель полярной станции на Земле Франца-Иосифа Касаткин получил более 300 снимков снежинок разнообразнейшей формы, сделанных новым, оригинальным способом.

По большей части во всех кристаллах повторяется в различных сочетаниях основная шестиугольная форма, но в некоторых случаях получаются снежинки совсем особенного вида, например, та, которая так напоминает часы, что Бентлей так и назвал ее "кристалл-часы". Было бы чрезвычайно интересно проследить зависимость между видом снежинок и различными условиями погоды; но вопрос этот пока еще далек от разрешения.

Проф. Леману, при работе с растворами йодоформа, кристалл которого тоже имеет шестиугольную форму, удалось получить в лаборатории искусственные "снежинки" йодоформа, совершенно похожие на обычные снежинки и проследить их постепенный рост (рис. 38).



Рис. 38. Постепенный рост кристаллов йодоформа в опытах Лемана. Начальный кристалл имеет шестиугольную форму. Концентрация раствора выше всего у углов шестиугольника, и на них начинают нарастать лучи; рост опять идет сильнее всего в местах наибольшей насыщенности, т. е. у концов лучей, где получаются новые образования и т. д. Это, конечно, лишь самое общее объяснение явления.


ПОЧЕМУ СНЕГ ШЕСТИУГОЛЬНЫЙ?

Шестиугольная форма основных кристаллов снега была подмечена уже давно; в 1611 году знаменитый астроном Кеплер опубликовал сочинение "Новогодний подарок или о шестиугольном снеге", где, говоря о формах снежинок, задает между прочим вопрос: "Отчего снег шестиуголен?" и отвечает сам: "Вещь эта мне еще не открыта". Проф. Б. П. Вейнберг, из весьма интересной книжки которого "Снег, иней, град, лед и ледники" мы заимствуем это указание, замечает по этому поводу, что "ответ Кеплера приходится повторить и нам, хотя нас разделяет от Кеплера более чем три столетия". Общий вопрос о том, почему то или иное вещество кристаллизуется в той или иной форме, еще весьма далек от разрешения.

Шестиугольная форма кристаллизации воды лежит в основе и тех разнообразных узоров, которые в морозные дни образуются на оконных стеклах; здесь на направление роста кристаллов влияют различные особенности поверхности, и кроме того частицы воды (пара) стремятся заполнить все промежутки между кристалликами! давая более или менее сплошные образования. Здесь мы не находим уже той правильности, какую обнаруживают отдельные снежинки.


КАК ПРИГОТОВИТЬ МОДЕЛИ ВЫПАВШЕГО ГРАДА

Град идет обычно из грозовых облаков, вершины которых достигают очень больших высот, так что капли выделившейся там воды сразу замерзают. Падая вниз и проходя через облако, они обмерзают новым слоем льда, а так как в грозовых облаках развиваются сильные вихревые движения, то они подхватываются ими и уносятся снова вверх. Если такая пляска продолжается несколько раз, то на первоначальном ядре может намерзнуть очень много льда и когда, наконец, градина упадет на землю, она оказывается довольно внушительных размеров. Однако тайну града нельзя считать вполне разгаданной: попадаются и кристаллические градины большой величины, не имеющие слоистого строения.

Такие оригинальные градины наблюдали и зарисовали, например, акад. Абих у нас на Кавказе и астроном Секки. Проф. Клоссовским зарисованы градины, поразительно напоминающие строение венчика махрового цветка вроде розы или мака, причем основная шарообразная масса градины соответствовала рыльцу и будущему плоду растения, а лепестковидные придатки к шарику воспроизводили полное подобие махрового венчика; часть лепестков была матовой, молочной структуры, часть же чисто прозрачного льда.

Малоизученность этих явлений происходит от того, что во время выпадения подобного града часто не успевают сделать даже хорошей фотографии, а град между тем быстро тает. Еще труднее успеть зарисовать градины. Проф. К. Жук предложил простой способ приготовлять модели из выпавшего града, но способ этот почему-то забылся, а между тем его можно рекомендовать всем любителям природы. Он состоит в том, что выпавший град облепляется разведенным гипсом. Последний настолько быстро затвердевает, что льдинки внутри него не успевают растаять и изменить своей формы. Когда же градинка растает и вода вытечет сквозь поры гипса, пустоту заливают через отверстие сплавом Розе, нагретым до температуры 110° Ц. Сплав Розе приготовляется из одной части свинца, одной части олова и двух частей висмута