Занимательная микроэлектроника — страница 11 из 117

Uпр изменяется примерно на 2,3 мВ.

Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Впрочем, тепловые процессы инерционны, и в справочниках указывается обычно среднее значение допустимого тока, а мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое в сотни раз! Обычное значение среднего предельно допустимого тока через маломощные диоды — десятки и сотни миллиампер. Мощные диоды (при токах 3–5 А и выше) часто приходится устанавливать на радиаторы.

Другая характеристика диодов — предельно допустимое обратное напряжение. Если оно превышено, то диоды также выходят из строя — электрически пробиваются и замыкаются накоротко. Обычная допустимая величина обратного напряжения для маломощных диодов — десятки вольт, для выпрямительных— сотни вольт, но есть диоды, которые выдерживают и десятки тысяч вольт. Далее мы увидим, что существуют приборы, для которых пробой в обратном включении является рабочим режимом, — они называются стабилитронами.

Подробности

Физически диод состоит из небольшого кристаллика полупроводникового материала, в котором в процессе производства формируются две зоны с разными проводимостями, называемыми проводимостью n- и p-типа. Ток всегдатечет от p-зоны к n-зоне (это стоит запомнить), в обратном направлении диод заперт. Более подробные сведения о физике процессов, происходящих в р-n-переходе, излагаются во множестве пособий, включая школьные учебники, но для практической деятельности почти не требуются.


Транзисторы

Транзистор— это электронный полупроводниковый прибор, предназначенный для усиления сигналов. Первым таким прибором в истории была электронная лампа (а еще до нее, кстати — электромагнитные реле, которые мы кратко рассмотрим далее). Лампа сумела сделать немало — именно в «ламповую» эпоху возникли радио и телевидение, компьютеры и звукозапись. Но только транзистор и появившиеся на его основе микросхемы сумели действительно перевернуть мир так, что электронные устройства вошли в наш повседневный быт и мы теперь уже не мыслим себя без них.

Транзисторы делятся на биполярные и полевые (или униполярные). Пока мы будем говорить только о биполярных транзисторах.

Физически биполярный транзистор — это структура из трех слоев полупроводника, разделенных двумя р-n-переходами. Поэтому можно себе представить, что он состоит как бы из двух диодов, один из слоев у которых общий, и это весьма близко к действительности! Скомбинировать два диода можно, сложив их либо анодами, либо катодами, соответственно, различают n-р-n- и р-n-р-транзисторы, которые отличаются только полярностями соответствующих напряжений. Заменить n-р-n-прибор на аналогичный р-n-р можно, просто поменяв знаки напряжений во всей схеме на противоположные (и все полярные компоненты — диоды, электролитические конденсаторы — естественно, тоже надо перевернуть). Транзисторов n-р-n-типов выпускается гораздо больше, и употребляются они чаще, поэтому мы пока что будем вести речь исключительно о них, но помнить, что все сказанное справедливо и для р-n-р-структур, с учетом обратной их полярности. Правильные полярности и направления токов для n-р-n-транзистора показаны на рис. 3.2.



Рис. 3.2.Биполярный транзистор:

а — рабочие полярности напряжений и направления токов в n-р-n-транзисторе (к — коллектор, б — база, э — эмиттер); б — условное представление транзистора, как состоящего из двух диодов


Первый в истории транзистор был построен в знаменитых Лабораториях Белла (Bell Labs) Дж. Бардиным и У. Браттайном по идеям Уильяма Брэдфорда Шокли в 1947 году. В 1956 году все трое были удостоены Нобелевской премии. Кроме изобретения транзистора, У. Шокли известен также, как один из основателей знаменитой Кремниевой долины — технополиса в Калифорнии, где сегодня расположено большинство инновационных полупроводниковых и компьютерных фирм. Из фирмы Шокли, под названием Shockley Semiconductor Labs, вышли, в частности, Гордон Мур и Роберт Нойс — будущие основатели крупнейшего ныне производителя микропроцессоров фирмы Intel. Г. Мур еще известен, как автор знаменитого «закона Мура», а Р. Нойс — как изобретатель микросхемы (совместно с Д. Килби — подробнее см. главу 6).



Рис. 3.3.Первый в истории транзистор

(Фото Lucent Technologies Inc./Bell Labs)


Три вывода биполярного транзистора носят названия коллектор, эмиттер и база. Как ясно из рис. 3.2, б, база присоединена к среднему из трех полупроводниковых слоев. Так как, согласно показанной на рисунке полярности, потенциал базы более положителен, чем у эмиттера, то соответствующий диод всегда открыт для протекания тока. Парой страниц ранее мы убедились, что в этом случае на нем должно создаваться падение напряжения в 0,6 В. Именно так и есть — в рабочем режиме напряжение между эмиттером и базой всегда составляет приблизительно 0,6 В, причем на базе выше, чем на эмиттере (еще раз напомним, что для p-n-p-транзисторов напряжения обратные, хотя абсолютные величины их те же). А вот диод между коллектором и базой заперт обратным напряжением. Как же может работать такая структура?

Практически это можно себе представить, как если бы ток, втекающий в базу, управлял неким условным резистором, расположенным между коллектором и эмиттером (пусть вас не смущает помещенный там диод «коллектор-база», через него-то ток все равно не потечет). Если тока базы нет, т. е. выводы базы и эмиттера закорочены (здесь, главное, чтобы (Uбэ было бы близко к нулю), тогда промежуток «эмиттер-коллектор» представляет собой очень высокое сопротивление, и ток через коллектор пренебрежимо мал (сравним с обратным током диода). В таком состоянии транзистор находится в режиме отсечки (говорят, что прибор заперт или закрыт).

В противоположном режиме ток базы велик (Uбэ = 0,6–0,7 В, как мы говорили ранее, при этом ток, естественно, ограничен специальным сопротивлением), тогда промежуток «эмиттер-коллектор» представляет собой очень малое сопротивление. Это режим насыщения, когда транзистор полностью открыт (естественно, в коллекторной цепи, как и в базовой, должна присутствовать какая-то нагрузка, иначе транзистор в этом режиме может просто сгореть). Остаточное напряжение на коллекторе транзистора может при этом составлять порядка 0,3 В. Эти два режима представляют часто встречающийся случай, когда транзистор используется в качестве ключа (или, как говорят, «работает в ключевом режиме»), т. е. как обычный выключатель тока.


Ключевой режим работы биполярного транзистора

А в чем смысл такого режима, спросите вы? Смысл очень большой — ток базы может управлять током коллектора, который как минимум на порядок больше, т. е. налицо усиление сигнала по току (за счет, естественно, энергии источника питания). Насколько велико может быть такое усиление? В режиме «ключа» почти для всех обычных типов современных транзисторов можно смело полагать коэффициент усиления по току (т. е. отношение максимально возможного тока коллектора к минимально возможному току базы Iк/Iб) равным нескольким десяткам — не ошибетесь. Если ток базы и будет больше нужного — не страшно, он никуда не денется, открыться сильнее транзистор все равно не сможет. Коэффициент усиления по току в ключевом режиме еще называют «коэффициентом усиления по току в режиме большого сигнала» и обозначают буквой β. Есть особые «дарлингтоновские» транзисторы, для которых β может составлять до 1000 и более (обычно они составные, поэтому напряжение Uбэ у них заметно больше обычного: 1,2–1,5 В).

Рассмотрим подробнее ключевой режим работы транзистора ввиду его важности для практики. На рис. 3.4 показана простейшая схема включения транзистора в таком режиме, для наглядности — с лампочкой в качестве коллекторной нагрузки.



Рис. 3.4.Включение биполярного транзистора в ключевом режиме


Попробуем рассчитать необходимую величину резистора в базе. Как вы сейчас увидите, для транзисторных схем характерно, что напряжения в схеме никакой роли не играют, только токи: можно подключить коллекторную нагрузку хоть к напряжению 200 В, а базовый резистор питать от 5-вольтового источника, — если соотношение β>Iк/Iб соблюдается, то транзистор (при условии, конечно, что он рассчитан на такое высокое напряжение) будет послушно переключать 200-вольтовую нагрузку, управляясь от источника 5 В. Таким образом, налицо усиление сигнала по напряжению!

В нашем примере выбрана небольшая автомобильная лампочка 12 В, 100 мА (примерно, как для подсветки приборной доски в «Жигулях»), а цепь базы питается от источника 5 В. Расчет элементарно прост: при 100 мА в коллекторе, в базе должно быть минимум 10 мА (не глядя в справочник, ориентируемся на минимальное значение (β = 10). Напряжение на базовом резисторе Rб составит 5 В — 0,6 В = 4,4 В (о падении между базой и эмиттером забывать не следует), т. е. нужное сопротивление будет равно 440 Ом. Выбираем ближайшее меньшее из стандартного 5 %-ного ряда и получаем 430 Ом. Все?

Нет, не все. Схема еще не совсем доделана. Она будет работать нормально, если вы будете поступать так: подключать базовый резистор к 5 В (лампочка горит), а затем переключать его к «земле» (лампочка гаснет). Но довольно часто встречается ситуация, когда напряжение на базовый резистор подается-то нормально, а вот при отключении его резистор не присоединяется к «земле», а просто «повисает в воздухе» (именно этот случай и показан на схеме в виде контактов выключателя К). Так мы не договаривались. Чтобы транзистор был в режиме отсечки, надо установить равные потенциалы базы и эмиттера, а какой потенциал будет у базы, если она «в воздухе»? Это только формально, что ноль, а на самом деле всякие наводки— электричества-то вокруг полно — и внутренни