Главным и основным свойством, побуждающим инженера-электротехника и электроника прибегать к обычным реле в век господства транзисторов и микросхем, является полная (более полной и представить себе трудно) гальваническая развязка не только обмотки от коммутируемого напряжения, но, если пар контактов больше одной, то и различных коммутируемых напряжений друг от друга. Коммутация происходит чисто механическим способом, потому коэффициент усиления по мощности у реле ого-го-го какой! Например, обмотка реле РЭС9 потребляет 30 мА при 27 вольтах, что составляет меньше ватта, но может двумя парами контактов коммутировать нагрузки до 1 А при 220 вольтах переменного тока на каждый контакт в отдельности, т. е. в сумме почти полкиловатта! В этом отношении их могут «переплюнуть» только оптоэлектронные реле, о которых речь шла ранее.
Главный недостаток электромагнитных реле в сравнении с полупроводниковыми устройствами — энергетический порог, с которого начинается управление обмотками, весьма велик. Все же токи в 30–50 мА при напряжениях 15–27 вольт, т. е. мощности порядка ватта (это для малогабаритных реле — для реле покрупнее нужна еще большая мощность) — запредельны для современной электроники, и это слишком большая роскошь, если требуется всего только включить нагрузку в виде лампочки. В справочниках приводится либо величина тока через обмотку, либо величина рабочего напряжения, что равнозначно, потому что величина сопротивления обмотки тоже всегда указывается. Обычно одинаковые типы реле имеют разновидности с разными сопротивлениями обмоток (это определяется т. н. «паспортом реле»).
Заметки на полях
Другим недостатком обмоток реле, как нагрузки для полупроводниковых приборов, является то, что они представляют собой индуктивность. Для постоянного тока зто просто сопротивление, но в момент переключения она может доставить немало неприятностей. В момент разрыва или замыкания управляющей цепи на обмотке реле возникает импульс напряжения (по полярности он препятствует направлению изменения тока в обмотке), и если индуктивность обмотки велика, а ее собственное (активное) сопротивление мало, то импульс этот может вывести из строя коммутирующий прибор (например, транзистор). В любом случае это создает сильные помехи остальным элементам схемы по шине питания. Поэтому при стандартном включении реле всегда рекомендуется устанавливать параллельно его обмотке диод (даже если коммутация происходит не от полупроводниковых источников, а от таких же реле) в таком направлении, чтобы в статическом режиме, когда все успокоилось и никто ничего не коммутирует, диод этот тока не пропускал (см. рис. 3.15, б). Тогда выброс напряжения ограничивается на уровне напряжения на открытом диоде, т. е. 0,6 В. Для управления подобными элементами (кроме реле, это, например, обмотки двигателей) в мощные коммутирующие транзисторы, подобные показанным на рис. 3.9, б, часто устанавливают защитные диоды еще в процессе их изготовления. Маломощные реле, управляемые от логических схем, также не требуют установки специальных диодов, роль которых играют защитные диоды микросхем (см. главу 8).
Следует учитывать еще вот какую особенность электромагнитных реле: ток (напряжение) срабатывания у них много превышает ток (напряжение) отпускания. Так, если в характеристиках указано, что номинальное напряжение реле составляет 27 В, то это напряжение, при котором замыкание нормально разомкнутых до этого контактов гарантируется. Но совершенно не обязательно (а иногда и не нужно) выдерживать это напряжение длительное время. Так, 27-вольтовые реле спокойно могут удерживать контакты в замкнутом состоянии вплоть до того момента, пока напряжение на их обмотке не снизится до 5–8 В. Это очень удобное свойство электромагнитных реле — называемое гистерезисом, — которое позволяет избежать дребезга при срабатывании-отключении и даже сэкономить на энергии при работе с ними. Так, на рис. 3.16, а приведена схема управления реле, которое в начальный момент времени подает на него нужное номинальное напряжение для срабатывания, а затем неограниченное время удерживает реле в сработавшем состоянии при пониженной величине тока через обмотку.
На рис. 3.16 также приведены еще две классические схемы. Первая (рис. 3.16, б) называется «схемой самоблокировки» и очень часто применяется в управлении различными мощными устройствами, например, электродвигателями станков. Мощные реле-пускатели для таких двигателей имеют даже специальную отдельную пару маломощных контактов, предназначенную для осуществления самоблокировки. В этих случаях ток через стандартные кнопки «Пуск» и «Стоп» не превышает тока через обмотку пускателя (который составляет несколько десятков или сотен миллиампер), в то время, как мощность разрываемой цепи может составлять многие киловатты, притом цепи трехфазной со всякими дополнительными неприятностями типа огромных индуктивностей обмоток мощных двигателей.
Рис. 3.16. Некоторые схемы включения реле:
а — со снижением напряжения удержания; б — схема самоблокировки с кнопками «Пуск» и «Стоп»; в — схема классического электромеханического звонка
Другая схема (рис. 3.16, в) скорее забавна, и есть дань прошлому, когда никакой электроники не существовало. Это схема простейшего электрического звонка, которая может быть реализована на любом реле. Оно и само по себе при подключении по этой схеме задребезжит (правда, звук может быть самым разным, в зависимости от быстродействия и размеров реле, потому лучше употребить слово «зазуммерит»), но в обычном звонке якорь еще связывают со специальной тягой, которая в процессе работы стучит по металлической чашке, формируя звуковой сигнал. Есть и более простая конструкция электромеханического звонка, когда на обмотку реле просто подают переменное напряжение, от чего якорь вибрирует с его частотой (так устроены, например, звонки старинных телефонов с крутящимся диском), но нас тут интересует именно классическая схема, потому что в ней в чистом виде реализован другой основополагающий принцип электроники, так или иначе присутствующий в любых генераторах колебаний — принцип положительной обратной связи. Якорь в первый момент притягивается, в результате питание размыкается, якорь отпускает— питание замыкается, якорь притягивается и т. д. Частота генерируемых колебаний зависит исключительно от механической инерции деталей реле.
Глава 4Правильное питание — залог здоровья
Не так-то просто понять, как справиться с вредителями. Сначала их надо изучить, разобраться, как они устроены, чем питаются…
Реклама средств от насекомых
Трансформаторы и фильтрующие конденсаторы зачастую составляют основную часть массы и габаритов многих современных микроэлектронных устройств. Однако реальной альтернативы обычным трансформаторным источникам питания, которые мы здесь будем рассматривать, всего две: либо электрохимические источники тока (батареи и аккумуляторы), либо импульсные источники питания (экзотику вроде солнечных батарей мы учитывать не будем).
Главное преимущество электрохимических источников (см. Приложение 2) — мобильность, в чем им замены нет. Главный недостаток— они не обеспечивают долговременной эксплуатации для подавляющего большинства электронных приборов, за исключением специально спроектированных малопотребляющих (вроде наручных часов) либо включающихся на непродолжительное время (пульты управления бытовой техникой) устройств. А для таких изделий, как плееры, цифровые фотоаппараты, мобильные телефоны И ноутбуки, емкость электрохимических источников явно недостаточна, К тому же общий срок службы их оставляет желать лучшего. Так что масса неудобств, которые приходится испытывать пользователям, есть вынужденная плата за мобильность. И одно из самых серьезных ограничений — отсутствие унификации зарядных устройств, хотя бы для аккумуляторов одного типа. Лично мне приходится таскать с собой в деревню и обратно пять типов зарядных устройств (два для разных мобильников, одно для фотоаппарата, одно для карманного компьютера и одно для шуруповерта), а ведь я далеко не самый «мобильный» из своих знакомых. Правда, положение потихоньку выправляется — по крайней мере для мобильных телефонов и КПК зарядники постепенно унифицируются, хотя и недостаточно быстрыми темпами.
Остальные варианты мобильными не являются, и носят общее название вторичных источников питания, потому что они преобразуют энергию бытовой электросети в нужное напряжение постоянного тока. Главное преимущество импульсных источников — экономичность и значительно лучшие массогабаритные характеристики по сравнению с трансформаторными источниками. Поэтому практически все стационарные современные бытовые приборы снабжаются именно такими источниками — компьютеры, телевизоры, музыкальные центры и т. д. Главный их недостаток— сложность конструкции и вытекающая отсюда относительно высокая стоимость. Как правило, их целесообразно применять для относительно мощных приборов, с энергопотреблением 50—100 Вт и выше. Если вы попробуете создать импульсный источник, рассчитанный на 5—10 Вт, то вы в габаритах, стоимости и надежности скорее всего проиграете, даже с использованием серийно выпускающихся модулей.
Самостоятельно конструировать, изготавливать и настраивать импульсные источники принципиально сложнее обычных. В конце главы я приведу конструкцию небольшого самодельного импульсного преобразователя напряжения, но на практике в 99,9 % случаев всегда можно найти подобный серийно выпускающийся аналог. А так мы в основном ограничимся обычными трансформаторными источниками с аналоговым регулированием. Кстати, импульсные источники тоже в большинстве своем содержат трансформатор, но он не является определяющим элементом.
Упомянем еще об одной альтернативе, которая была весьма модной в радиолюбительских кругах в советские времена — бестрансформаторные источники питания от сети. Вы можете наткнуться на нечто подобное, если перелистаете старые журналы «Радио». В связи с этим следует сказать только одно.