∙√2 = 14,1 В, так что на холостом ходу напряжение на выходе источника практически равно 14 В. Почему же на схеме написано 12 В?
При подключении нагрузки происходит сразу много всего. Во-первых, снижается напряжение на вторичной обмотке, поскольку трансформатор имеет конечную мощность. Во-вторых, увеличивается падение напряжения на диодах, которое может при максимально допустимом для них токе достигнуть
В на каждом. В-третьих, и в главных, во время «провалов» пульсирующего напряжения нагрузка питается только за счет того, что через нее разряжается конденсатор. Естественно, напряжение на нем при этом каждый раз немного снижается. Поэтому график выходного напряжения при подключенной нагрузке представляет собой уже не ровную постоянную линию, а выглядит примерно так, как показано на рис. 4.3 (причем снижение входного напряжения за счет «просаживания» трансформатора здесь не учитывается).
Рис. 4.3. Вид пульсаций на выходе нестабилизированного источника:
1 — исходное пульсирующее напряжение в отсутствие фильтрующего конденсатора; 2 — выходное напряжение при наличии фильтрующего конденсатора и нагрузки
Таким образом, выходное напряжение немного пульсирует— тем больше, чем больше ток в нагрузке, и тем меньше, чем больше емкость конденсатора. Именно поэтому в источниках применяют электролитические конденсаторы столь большой емкости. Наличие пульсаций также снижает постоянную составляющую выходного напряжения.
Заметки на полях
В данной схеме избавиться от этих пульсаций полностью невозможно, как бы вы ни увеличивали емкость. Кстати, а как подсчитать нужную емкость? В принципе, это возможно, если задаться необходимым уровнем пульсаций, но мы здесь приведем только эмпирическое и весьма приблизительное правило: на каждый ампер нагрузки достаточно конденсатора от 1000 до 2200 мкФ. Первая величина ближе к тому случаю, когда на выходе такого источника планируется поставить стабилизатор напряжения, вторая — если такого стабилизатора не предполагается. Может показаться, что увеличением емкости конденсатора при заданной нагрузке можно в конце концов избавиться от пульсаций вообще, однако вы легко установите на практике, что увеличение емкости сверх некоторого значения далее пульсаций уже не снижает, помочь может только стабилизатор.
Указанные причины совместно приводят к тому, что под нагрузкой маломощные источники (типа тех, что со встроенной вилкой) могут выдавать в полтора-два раза меньшее напряжение, чем на холостом ходу. Поэтому не удивляйтесь, если вы приобрели такой блочок с указанным на шильдике номинальным напряжением 10 В, а мультиметр на холостом ходу показывает аж все 18!
Чтобы завершить описание простейшего источника, нужно сказать пару слов об указанном на схеме (см. рис. 4.2) предохранителе Пр. В упомянутых блоках со встроенной вилкой предохранитель часто отсутствует, и это вызвано, кроме стремления к удешевлению устройства, очевидно, тем обстоятельством, что маломощный трансформатор сам служит неплохим предохранителем — провод первичной обмотки у него настолько тонок, и сопротивление его настолько велико, что при превышении допустимого тока обмотка довольно быстро сгорает, отключая весь блок. (После чего его, естественно, остается только выбросить.) Но в стационарных устройствах и тем более в источниках большей мощности предохранитель должен быть обязательно. Обычно его выбирают на ток в два-четыре раза больший, чем расчетный максимальный ток первичной обмотки.
Приведем еще одну полезную схему нестабилизированного источника, на этот раз двуполярного, т. е. выдающего два одинаковых напряжения относительно средней точки — «земли» (рис. 4.4).
Рис. 4.4.Нестабилизированный двуполярный источник питания
В принципе, она пояснений не требует, потому что очень похожа на однополярную, только возврат тока в обмотки от обеих нагрузок происходит непосредственно через общую «землю», минуя диодный мост. В качестве упражнения предлагаю вам самостоятельно разобраться, как работает эта схема. Вторичные обмотки (II и III) здесь, в сущности, представляют собой две одинаковые половины одной обмотки. Жирными точками около вторичных обмоток обозначены их начала, чтобы не перепутать порядок их соединения, если их наматывали раздельно.
Простейший стабилизатор — это стабилитрон, который мы упоминали в главе 3. Если параллельно ему подключить нагрузку (рис. 4.5, а), то напряжение на ней будет стабилизировано до тех пор, пока ток через нее не будет слишком велик. Рассчитать работу этой схемы можно так: в отсутствие стабилитрона напряжение в средней точке делителя из Rст (оно равно 200 Ом, как вы, наверное, догадались, т. к. при обозначении на схемах омы в большинстве случаев опускают, см. главу 5) и Rн должно превышать номинальное напряжение стабилизации стабилитрона Uст, иначе при его подключении ток через него не пойдет и стабилитрон не откроется. Так что максимальный ток, который мы можем получить в такой схеме, не превышает нескольких десятков миллиампер— в зависимости от мощности стабилитрона. Такой стабилизатор называют еще параметрическим.
Подробности
Вы зададите вопрос — а зачем здесь конденсатор? Ведь в нестабилизированном источнике, который мы рассмотрели ранее, и откуда поступает напряжение на этот стабилизатор, один фильтрующий конденсатор уже имеется, не так ли? Ответ простой: на выходе всех типов стабилизаторов всегда ставится конденсатор. Он позволяет сгладить наличие остаточных пульсаций, которые все равно просочатся на выход, т. к. стабилитрон имеет свое дифференциальное сопротивление, и при изменении входного напряжения или тока в нагрузке напряжение на нем также будет меняться, хоть и в значительно меньшей степени. Величина емкости здесь может быть значительно меньше, чем на выходе выпрямительного моста. Для интегральных стабилизаторов, которые мы будем рассматривать далее, установка конденсатора положена по рекомендациям производителя (и на входе, и на выходе) — иначе сложные внутренние схемы таких стабилизаторов с обратными связями могут «гудеть» — самовозбуждаться.
Значительно интересней схема на рис. 4.5, б. Здесь транзистор включен эмиттерным повторителем (см. главу 3), который, во-первых, имеет высокое входное сопротивление (поэтому ток через стабилитрон практически не зависит от изменений тока в нагрузке), во-вторых, служит усилителем тока, т. е. мощностные возможности здесь определяются только транзистором. Конденсаторов здесь целых два: первый помогает сглаживать пульсации на стабилитроне, второй — дополнительно оставшиеся пульсации на выходе транзистора.
Рис. 4.5.Два параметрических стабилизатора:
а — самый простой на стабилитроне; б — с эмиттерным повторителем
Подробности
Давайте попробуем рассчитать для простейшей параметрической схемы (рис. 4.5, а) т. н. коэффициент стабилизации: отношение изменения входного напряжения (в %) к изменению выходного (также в %). Для этого надо посмотреть в справочнике величину дифференциального сопротивления стабилитрона: для указанного КС156А — 46 Ом. Это означает, что при изменении тока через него на 1 мА изменение напряжения стабилизации составит 46 мВ. Теперь предположим, что входное напряжение изменяется на 1 В (8,3 %), тогда изменение тока будет равно 1 В/200 Ом = 5 мА, отсюда изменение выходного напряжения будет 46 — 5 = 230 мВ или 4,6 %. Коэффициент стабилизации тогда будет равен 8,3/4,3 ~= 2. Конечно, это очень маленькая величина, потому простейшие параметрические стабилизаторы ставят только в редких случаях, когда входное напряжение дополнительно стабилизировано заранее.
Выходное сопротивление простейшего стабилизатора очень велико, поэтому выходное напряжение будет «гулять» независимо от входного при изменении тока нагрузки, от которого напрямую зависит ток через стабилитрон. Другое дело — схема на рис. 4.5. б, в которой ток через стабилитрон изменяется на величинуβ транзистора меньшую, чем ток в нагрузке. Статический коэффициент передачи тока для транзистора КТ815А равен (по справочнику) 40, поэтому при изменении тока нагрузки на 1 мА, ток через стабилитрон изменится всего на 0,025 мА, а напряжение стабилизации, соответственно, всего на 1,15 мВ, а не на 46 мВ, как ранее. Теоретический коэффициент стабилизации этой схемы по входному напряжению равен приблизительно 70. На практике стабилизирующие свойства данной схемы оказываются несколько хуже, т. к. следует учитывать нестабильность падения напряжения «база-эмиттер» транзистора.
При этом надо учитывать ограничения, накладываемые минимальным током через стабилитрон (5 мА для КС156А) и его максимальной допустимой мощностью (300 мВт). При выходном токе 1 А базовый ток транзистора должен составить не менее 25 мА, поэтому общий ток через резистор Rст не может быть меньше 30 мА (что и дает значение 200 Ом при минимальной разности напряжений «вход-выход» ~6 В). Максимально возможный выходной ток в такой схеме ~2 А, потому что минимальное значение Rст = 100 Ом. При отсутствии нагрузки ток через стабилитрон составит тогда 60 мА, а выделяющаяся на нем мощность при напряжении стабилизации ~5 В как раз и составит 0,3 Вт.
Да, кстати, а какая мощность выделится на «проходном» транзисторе VT1? Не такая уж и маленькая: при выходном токе 1 А она составит (12 В — 5 В)∙1 А = целых 7 Вт! Значит, транзистор явно придется ставить на радиатор. Отсюда виден главный недостаток подобных аналоговых стабилизаторов — низкий КПД. В данном случае он всего около сорока процентов (проверьте!), остальное рассеивается в пространстве. Мы можем его несколько повысить, снижая входное напряжение, но только до определенного предела. Здесь этот предел равен примерно 8 В, иначе эта схема не справится. Помните, однако, что 8 В — это действительно нижний предел, а не среднее значение пульсирующего напряжения на выходе конденсатора фильтра, котор