ЧИП-резисторы для поверхностного монтажа маркируются по-другому: тремя цифрами, первые две из которых есть номинальное значение (без запятой!), а последняя справа — степень десяти. Так, надпись 103 означает 10∙103 = 10 000 Ом, т. е. 10 кОм, а надпись 272 — 2700 Ом, т. е. 2,7 кОм.
Аналогично маркируются конденсаторы (любые малогабаритные), только за основу шкалы там приняты пикофарады (10-12 Ф). Так что надпись 474, скажем, расшифровывается, как 47∙104∙10-12 = 0,47∙10-6 Ф или 0,47 мкФ. При обозначении на схемах единицу измерения (Ф) часто опускают, и пишут просто «мк» (мкФ), «н» или «п» (нФ), «п» или «р» (пФ). Пикофарады (подобно омам) могут вообще не указывать. Часто микрофарады обозначают просто лишним десятичным знаком (мы именно так и поступали в главе 4) — например, запись «100,0» означает 100 мкФ, в то время как просто «100» — это 100 пФ.
Проблема корпусов для радиоаппаратуры не стоит особенно остро — все крупные (и помельче) фирмы, торгующие компонентами, предлагают и различные корпуса. Беда тут примерно та же, что и с покупкой, скажем, обуви — вроде ее много на любой вкус и кошелек, да одни ботинки не смотрятся, в других кантик неподходящий, третьи цветом не вышли, четвертые в подъеме жмут… Короче, подобрать под конкретный прибор готовый корпус — задача весьма непростая. Потратив несколько десятков «баксов» на блестящее заморское изделие, очень не хочется браться за напильник, чтобы доводить его до ума, но приходится — здесь должно быть окно для индикатора, эту стенку вообще надо удалить, ибо тут будет стоять радиатор для мощного транзистора, тут требуются фигурные отверстия под разъемы… Тогда, спрашивается, зачем тратились? А если еще ошибешься, что нередко случается Даже с опытными слесарями?
В общем, есть простой способ изготовления корпусов в домашних условиях под конкретные нужды, причем если «руки на месте», то такие готовые изделия будут выглядеть практически не хуже фабричных. Заключается способ в том, что вы сначала рисуете эскизы всех стенок и перегородок, располагаете на экране компьютера (или просто карандашом на бумаге) все детали и платы, чтобы они не наезжали друг на друга, выверяете размеры (компьютер дает простор для такого рода творчества), а затем по готовым эскизам переносите размеры на фольгированный стеклотекстолит и вырезаете заготовки. Не забывайте давать припуски на толщину материала по нужным сторонам заготовок.
Лучше все отверстия сделать заранее, поскольку всегда удобнее работать с пластинкой, чем с готовой коробкой. Затем, прикладывая заготовки под прямым углом друг к другу, пропаиваете место стыка обычным припоем. Работать нужно самым мощным паяльником (200–400 Вт), припоем в прутках и водорастворимым активным флюсом. Сложность только одна, но существенная: припой сокращается в объеме при застывании, потому пластинки под прямым углом относительно друг друга надо прочно закреплять, иначе угол окажется совсем не прямым, а распаять будет уже очень трудно. Готовый корпус обтягивается самоклеящейся пленкой, например, под темное дерево. Если делать все аккуратно, получается классно!
Несколько замечаний по оформлению корпуса. Первое: если у вас в корпусе окно для индикаторов, то его надо делать из дымчатого, а не прозрачного пластика, а все, что за этим окном расположено, кроме, естественно, самих индикаторов (включая плату с компонентами), выкрасить в черный цвет из аэрозольного баллончика — это придаст опенок «фирменности» вашему изделию. Ужасно выглядят конструкции, в которых через стекло виднеются пайки на печатной плате. Можно к тому же заклеить всю незадействованную поверхность окна изнутри черной липкой лентой. Если следовать этому совету, то можно не выпиливать окна точно по размеру индикатора, что довольно сложно сделать красиво, а выполнить из дымчатого оргстекла, например, всю переднюю панель.
Второе замечание касается нанесения надписей на переднюю панель. Наилучший способ — заказать панель с лазерной гравировкой. Но это дорого и хлопотно, поэтому хочется сделать самому. Ручной способ отвергаем с порога — ничто не может выглядеть кошмарнее, чем надписи, сделанные вручную. Никакие трафареты и гравировальные машинки здесь помочь не могут. Это вообще была одна из самых тяжелых проблем до последнего времени и не только для радиолюбителей, даже мелкосерийные приборы на советских заводах выпускались с гравированными вручную надписями. И это было не слишком эстетично.
К счастью, в последние годы в связи со всеобщей доступностью струйных принтеров проблема качественной печати любым размером шрифта, любым цветом и на любом фоне решена полностью. Делается это на специальной основе, которая с одной стороны липкая и покрыта защитным слоем, как самоклеющаяся пленка, а с другой имеет особую пористую фактуру, хорошо удерживающую принтерные чернила. Она довольно дорогая, но десяти листочков вам хватит «на всю оставшуюся жизнь», если вы, конечно, не собираетесь налаживать крупносерийное производство. Если же такой пленки под рукой нет, то можно напечатать надписи просто на плотной мелованной бумаге (например, на обратной стороне обложки настенного календаря), а затем приклеить их двусторонним скотчем. Красивее всего, на мой взгляд, выглядят надписи, напечатанные с инверсией, т. е. белым цветом на черном фоне, только не забудьте закрасить белые горцы готовых к наклейке «лейблов» черным фломастером, иначе они будут очень бросаться в глаза.
Сразу скажем, что научно-обоснованной методики для расчета охлаждающих радиаторов не существует. По этому поводу можно написать не одну диссертацию или монографию (и написаны, и много), но стоит изменить конфигурацию охлаждающих ребер или стержней, расположить радиатор не вертикально, а горизонтально, приблизить к нему любую другую поверхность снизу, сверху или сбоку, как все изменится и иногда кардинально. Именно поэтому производители микропроцессоров или видеокарт предпочитают не рисковать, а снабжать свои изделия радиаторами с вентилятором — принудительный обдув, даже слабенький, повышает эффективность теплоотвода в десятки раз, хотя зачастую этого и не требуется. Последние модели компьютерных источников питания и материнских плат позволяют автоматически регулировать интенсивность обдува с целью снижения уровня шума, и некоторые такие конструкции вообще не запускают вентилятор, если процессор простаивает. В главе 6 мы поговорим о том, как самостоятельно изготовить такой регулятор.
В критичных случаях, для снижения габаритов очень мощного устройства, конечно, можно вместо пассивного радиатора пристроить к вашей конструкции процессорный «кулер» с вентилятором. Правда, на практике мне этого Делать никогда не приходилось, да и надежность конструкции снижается, т. к. за исправностью вентилятора приходится следить, а это неприемлемо Для устройств, которые предназначены для автономной работы в течение Длительного времени. Потому в радиолюбительских конструкциях мы обойдемся пассивными (без обдува) охлаждающими устройствами.
Здесь мы приведем только пару-другую эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать именно пассивные радиаторы, устроенные примерно так, как показано на рис. 5.2.
Рис. 5.2. Типичный пластинчатый радиатор
Сначала рассмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. Для такого расчета нужно к площади основания прибавить суммарную площадь его ребер (также с каждой стороны). Если нижней стороной радиатор прижимается к плате, то лучше считать рабочей только одну сторону основания, но мы предположим, что радиатор «висит» в воздухе (как часто и бывает) и поэтому площадь основания удваивается: Sосн = 2∙L1∙L2. Площадь одного ребра (тоже с двух сторон) Sp = 2∙L1∙h, но к этой величине нужно еще прибавить боковые поверхности ребра, площадь которых равна Sбoк = 2∙h∙δ. В данном случае ребер всего 6, поэтому общая площадь радиатора S = Sосн + 6∙Sp + 6∙Sбок. Пусть L1 = 3 см, L2 = 5 см, h = 3 см, δ = 0,2 см, тогда общая площадь такого радиатора будет 145 см2. Разумеется, это приближенный расчет (мы не учли, скажем, боковую поверхность основания), но для наших целей точнее и не надо.
Вот два эмпирических способа для расчета рассеиваемой мощности в зависимости от площади поверхности, и пусть меня не слишком строго осудят за то, что никаких особенных научных выкладок вы здесь не увидите.
Способ первый и наипростейший: площадь охлаждающего радиатора должна составлять 10 см2 на каждый ватт выделяющейся мощности. Так что радиатор на рис. 5.2 с размерами, приведенными ранее, согласно этому правилу может рассеять 14,5 Вт мощности (как раз годится для простейшего источника питания, показанного на рис. 4.5, б или 4.6). И если позволяют размеры корпуса, то вполне можно ограничиться этим прикидочным расчетом.
Если же вы хотите подсчитать поточнее, то вот один из более сложных способов, который годится для пластинчатых радиаторов средних размеров (L1 = 20—180 мм, L2 = 40—125 мм).
Рис. 5.3.Эффективный коэффициент теплоотдачи ребристого радиатора в условиях свободной конвекции при различной длине ребра:
1 — h = 32 мм; 2 — h = 20 мм; 3 — h = 12,5 мм
Для оценки тепловой мощности радиатора можно использовать следующую зависимость: W = αэфф∙θ∙S,
где: W — мощность, рассеиваемая радиатором, Вт; αэфф — эффективный коэффициент теплоотдачи,