Занимательная микроэлектроника — страница 33 из 117

2 служат для предотвращения возможного выхода из строя выходных каскадов микросхемы при индуктивных выбросах напряжения (например, при включении питания) — ох, до чего же нежные эти западные транзисторы!). Все электролитические конденсаторы — на напряжение не менее 16 В.

Если усилитель все же «загудит» (хотя и прямо об этом в тексте фирменной инструкции не сказано), здесь рекомендуется параллельно резистору обратной связи R4 установить цепочку из последовательно включенных резистора и конденсатора, которые ограничат полосу частот. При номиналах всех остальных компонентов, таких как указаны на схеме, резистор должен быть равен 2,2 кОм, а конденсатор — не менее 0,5 нФ. Увеличение емкости конденсатора сверх этой величины ведет к ограничению полосы частот, но и к повышению устойчивости схемы.

Сама микросхема TDA2030 выпускается в корпусе Т0220, знакомом по мощным транзисторам, только имеет он не три вывода, а пять (см. Приложение 3). Разводка выводов приведена на схеме, а для того, чтобы определить их расположение, нужно положить микросхему маркировкой вверх, тогда вывод номер 1 будет находиться первым слева (в однорядных корпусах микросхем ключ для определения начала отсчета выводов часто отсутствует, но первый вывод всегда расположен именно так, как указано).

Заметки на полях

Рекомендованная в инструкции площадь охлаждающего радиатора для выходной мощности 14 Вт должна составлять 350–400 см2, однако, на мой взгляд, эта величина завышена как минимум вдвое. Впрочем, подобное заключение я могу подтвердить, кроме весьма приблизительных расчетов из главы 5, только личным опытом и оно не должно быть воспринято, как руководство к действию — это совет из той самой серии «на ваш страх и риск». Скорее всего, разработчики из фирмы ST Microelectronics взяли запас специально, чтобы уменьшить уровень искажений при больших мощностях из-за встроенного механизма тепловой защиты.


На рис. 6.14 показано, как можно построить усилитель с удвоенной выходной мощностью при тех же напряжениях питания и используемых деталях. Это так называемая мостовая схема, которая представляет собой два идентичных усилителя, работающих на одну нагрузку в противофазе: когда на выходе одного усилителя положительный максимум напряжения, то на другом отрицательный.



Рис. 6.14.Схема мостового усилителя звуковой частоты


Таким образом, амплитуда и действующее значение напряжения на нагрузке возрастает ровно в два раза, соответственно растет и мощность, которая здесь составит при условии неискаженного сигнала почти 30 Вт. Для того чтобы усилители работали именно так, как указано, обычный (неинвертирующий) вход второго усилителя заземляется, а входной сигнал для него поступает на другой (инвертирующий) вход, туда же, куда и заведена его обратная связь. Сам этот входной сигнал берется с того места, куда поступает сигнал от первого усилителя (с левого по схеме вывода динамика) и ослабляется в той же степени, в которой оно было усилено первым усилителем, поскольку номиналы резисторов цепочки обратной связи R4, R3, задающей коэффициент усиления первого усилителя, и делителя Rд, R3' равны. Это означает, что на вход 2 второго усилителя поступает фактически то же самое входное напряжение, но, т. к. вход противоположной полярности, то на выходе второго усилителя повторится сигнал на выходе первого, только в противофазе, чего мы и добивались. Мощность источника питания, естественно, должна быть повышена.


Микроусилитель мощности

Не так уж редко возникает задача вывести звуковой сигнал на маломощный динамик или на головные наушники. Кроме очевидных применений вроде воспроизведения музыки, такой усилитель пригодился бы, скажем, в многочисленных конструкциях металлоискателей (их полно в Сети и в радиолюбительской литературе), в сигнальных устройствах. Одно из применений вы увидите в главе 19, когда мы заставим «разговаривать» микроконтроллер Существует поистине необъятное множество типов микросхем от разных производителей, которые осуществляют усиление звукового сигнала с возможностью выхода на низкоомную нагрузку. Здесь мы остановимся на одной из самых популярных — МС34119 (выпускается не только фирмой Motorola, как можно было бы заключить из названия, но и другими производителями, возможно, с другими буквенными префиксами). Микросхема выпускается в обычном корпусе всего с восемью выводами (DIP-8) и никаких радиаторов не требует.

Усилитель (рис. 6.15) обладает весьма неплохими характеристиками:

• напряжение питания 2—16 В (однополярное);

• сопротивление нагрузки 8 Ом (минимальное);

• частота единичного усиления: 1,5 МГц;

• выходная мощность 250 мВт (при напряжении питания 6 В и нагрузке 32 Ом);

• коэффициент гармоник 0,5–1 %;

• время готовности после включения питания не более 0,36 с.



Рис. 6.15. Вариант типовой схемы включения микросхемы МС34119


Самое главное — не надо думать, все уже придумано за вас. Коэффициент усиления задается двумя резисторами R1 и R2, и равен их отношению R2/R1 (в данном случае 25). Максимальная мощность в нагрузке 0,5 Вт обеспечивается при нагрузке 32 Ом (головные наушники) при питании 12 В. В других сочетаниях нагрузки и питания такая мощность не достигается, в том числе потому, что недопустимо увеличиваются искажения. Обратите внимание, что динамик не имеет соединения с «землей» (что естественно для схемы с однополярным питанием). Имеется также интересная возможность выключения усилителя с помощью сигнала от логических микросхем (например, от микроконтроллера) — если подать на вывод 1 напряжение питания, микросхема выключится и будет потреблять ток не более нескольких десятков микроампер.

Отметьте, что по сути и микросхема TDA2030, и МС34119, и базовая схема по рис. 6.11, и даже разобранные нами в главе 4 интегральные стабилизаторы, представляют собой не что иное, как узкоспециализированные ОУ — общие закономерности работы у них совершенно одинаковы. Что, если вдуматься, вполне логично, не так ли?

Глава 7На пороге цифрового века

Теперь в своей анкете в графе «Владение иностранными языками» вы можете гордо написать: «Бегло считаю по-японски до десяти…»

aikido-russia.ru


Все началось, конечно, с Аристотеля, который жил в IV веке до нашей эры. Когда читаешь вступление к любой популярной книге, посвященной чему угодно — от изящных искусств до биологии, химии, физики и математики, — возникает впечатление, что Аристотель был каким-то сверхчеловеком. Тем не менее, авторы не врут, просто знаний было тогда накоплено еще не очень много, и обозреть их все — задача вполне посильная для человека острого ума и выдающихся способностей, каким Аристотель, несомненно, был.

Но главный урок Аристотеля, который заставляет даже пожалеть о том, что в современных колледжах и университетах прекратили преподавать латынь и греческий, в том, что древние рассматривали дисциплины во взаимосвязи. Науки, хоть и делились Аристотелем на практические (этику и политику) и теоретические (физику и логику) дисциплины, но они рассматривались, как составные части единой науки. И это, без сомнения, более верная позиция, которую даже несколько раз переоткрывали заново (синергетика, синтетическая теория эволюции), но тогда, когда уже было бесполезно: ученые, как строители Вавилонской башни, окончательно поделились на слабо понимающих друг друга специалистов по дисциплинам.

Заметки на полях

Аристотель, между прочим, четко разделял науку и ремесла («техно», по-гречески) — позиция, которая была странным образом утрачена уже почти на наших глазах, во второй половине XX века, когда в 1956 году Нобелевскую (научную) премию впервые дали за технологическое достижение — изобретение транзистора. И пошло-поехало — в некоторых источниках я встречал утверждения, что существование микропроцессоров есть выдающееся научное достижение. И, раз уж мы заговорили на философские темы, уместно сделать еще одно замечание. Дело в том, что почти все «обычные» достижения технологического века (паровой двигатель, телеграф, телефон, самолет, телевизор, автомобиль и т. п.) в некотором смысле изобретать было не надо — идеи передачи речи или изображения на расстояние (волшебное зеркальце), или передвижения с большой скоростью по воздуху (ковер-самолет) были выдвинуты давно, вероятно, задолго даже до Аристотеля. Нужно было придумать только способы технического воплощения этих идей. Если завтра изобретут антигравитацию, вы, с детства читавшие фантастические романы, сильно ли удивитесь? А вот никаких таких «компьютеров» не существовало и в помине — в некотором смысле это единственное настоящее изобретение, основанное на чисто идеальных предпосылках, в материальном мире никаких аналогов не имевшее — кроме, конечно, самого человеческого разума. И люди — самые уважаемые, крупные математики — всерьез верили, что именно искусственный разум они и изобрели, не будучи в силах поверить, что это действительно абсолютно новая, ранее не существовавшая вещь, которой не надо искать аналогий в повседневности. Компьютеры к разуму имеют такое же отношение, как интернет-путешествие к реальной охотничьей экспедиции в Африку — это всего лишь имитационное моделирование отдельных немногочисленных сторон деятельности разума. Что совершенно не умаляет значимости самого изобретения, кстати, скорее наоборот.

Главной составной частью науки во времена Аристотеля считалась именно логика — искусство рассуждения. Она-то и послужила той основой, из которой выросла цифровая техника и все многообразие информационных технологий, которые окружают нас теперь на каждом шагу.


Булева алгебра

Законы аристотелевой логики, которые с его лихой подачи стали идентифицироваться с законами мышления вообще, неоднократно пытались привести в математическую форму. Некто Луллий в ХIII веке попытался даже механизировать процесс логических рассуждений, построив «Всеоб