Заметки на полях
ТТЛ-микросхемы значительно менее удобны на практике, поскольку для них характерно балансирование десятыми вольта: напряжение логического нуля составляет не более 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение логической единицы не менее 2,4 В. Иногда вы и сейчас можете встретить подобные требования к логическим уровням (в целях совместимости). ТТЛ могут работать в довольно узком диапазоне напряжений питания: практически от 4,5 до 5,5 В, а нормы предполагают обычно от 4,75 до 5,25 В, т. е. 5 В ±5 %. Максимально допустимое напряжение питания составляет для разных ТТЛ-серий от 6 до 7 В, при превышении его они обычно «горят ясным пламенем». Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к невысокой помехоустойчивости. Другим крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление (до 2,5 мА на один базовый элемент), так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много таких элементов, не требуют охлаждающего радиатора. По всем этим причинам, даже если вы будете повторять старые схемы на ТТЛ-микросхемах, их рекомендуется заменять на современные АС или НС-элементы КМОП, с которыми они совместимы по выводам.
И тут мы плавно переходим к основному недостатку базовых КМОП-технологий — низкому (в сравнении ТТЛ) быстродействию. Это обусловлено тем, что изолированный затвор МОП-транзистора представляет собой конденсатор довольно большой емкости (в базовом элементе до 10–15 пФ). В совокупности с выходным резистивным сопротивлением предыдущей схемы такой конденсатор образует фильтр нижних частот. Обычно рассматривают не просто частотные свойства, а время задержки распространения сигнала на один логический элемент, которое может достигать у базовой серии КМОП величины 250 не (сравните: у базовой серии ТТЛ — всего 10 нс), что соответствует одному периоду частоты 4 МГц. На практике при напряжении питания 5 В быстродействие базового КМОП не превышает 13 МГц. Попробуйте соорудить на логических элементах генератор прямоугольных сигналов по любой их схем, которые будут разобраны далее, и вы увидите, что уже при частоте 1 МГц форма сигнала будет скорее напоминать синусоиду, чем прямоугольник.
Другим следствием высокой входной емкости является то, что при переключении возникает импульс тока перезарядки этой емкости, т. е. чем выше рабочая частота, тем больше потребляет микросхема, и при максимальных рабочих частотах ее потребление может сравниться с потреблением ТТЛ.
Развитие КМОП было, естественно, направлено в сторону устранения или хотя бы сглаживания этих недостатков. Однако, в отличие от ТТЛ, базовый вариант которой, представленный в отечественном варианте сериями 155 и 133, сейчас практически забыт (исключение см., например, главу 19, раздел «Аналоговая индикация»), оригинальная базовая серия 4000В[7] применяется и по сей день — в основном из-за неприхотливости и беспрецедентно широкого диапазона питающих напряжений (от 3 до 18 В), что позволяет без излишних проблем совмещать цифровые и аналоговые узлы в одной схеме.
Отечественные аналоги стандартной серии CD4000B — это «бытовая» серия К561 в корпусе типа DIP, или «военная» 564 в планарном корпусе, аналоге американского SOIC или SOT. Имеется и ряд уже упоминавшихся быстродействующих КМОП-элементов (в первую очередь серии АС и НС). Для быстродействующих серий пришлось пожертвовать расширенным диапазоном питания, например, номинальный диапазон напряжения питания для 74НС начинается, правда, от 2, но простирается всего до 6 В, отсюда и популярность старинной CD4000B. Для быстродействующих КМОП западное название серии (74) и разводка выводов микросхем совпадает со старой базовой ТТЛ (а не с CD4000B), что, безусловно, было продиктовано маркетинговыми соображениями, но сделало базовую серию несовместимой с быстродействующими по выводам. Отечественный аналог называется логичнее— 1561 или 1564, но разводка выводов, увы, в целях совместимости с западными также совпадает с ТТЛ, а не с базовой КМОП. Чтобы не запутаться в зарубежных наименованиях (что там ТТЛ, а что КМОП), можно применять простое правило: если в наименовании серии присутствует буква С (от «комплементарный», кроме НС и АС, есть и просто С), то это КМОП, все остальные многочисленные представители семейства 74 есть ТТЛ-микросхемы.
Подробности
Как мы договаривались в главе 6, префикс «К» в наименовании микросхем мы в дальнейшем будем опускать, но серия 561 в «военном» варианте (без буквы «К») не существует, и перепутать невозможно. «Военный» вариант на Западе называют промышленным — industrial, а «бытовой» — коммерческим — commercial (отсюда буква «К» в отечественном варианте), вместе с тем «у них там» имеется еще отдельно довольно редкий чисто «военный» — military. На практике в розницу попадает из западных, микросхем только вариант commercial (отечественные можно сейчас часто купить и те и другие), industrial нужно специально заказывать. Коммерческие («бытовые») компоненты отличаются в основном тем, что гарантированно работают при температурах от О до 70 °C. Промышленный (industrial) диапазон обычно составляет от -40 до +85 °C (а иногда и значительно шире, транзисторы или микросхемы стабилизаторов питания, скажем, спокойно работают до +125 градусов и выше). Но не следует думать, что микросхема коммерческого диапазона сразу выйдет из строя, если вы ее охладите до -30° или нагреете до 100°. Вовсе нет, т. к. делаются они все обычно на одной линии (кроме каких-нибудь экстремально-космических применений, да и то не всегда), просто производитель не гарантирует, что в расширенном температурном диапазоне данная микросхема сохранит все оговоренные в описании характеристики.
Незадействованные входы элемента КМОП нужно обязательно подключать куда-нибудь — либо к «земле», либо к питанию, либо объединять с соседним входом — иначе наводки на столь высокоомном входе полностью нарушат работу схемы. Причем в целях снижения потребления следует делать это и по отношению к входам незадействованных элементов в том же корпусе (но не вообще ко всем выводам.). «Голый» вход КМОП из-за своей высокоомности может быть также причиной повышенной «смертности» чипов при воздействии статического электричества, однако на практике входы всегда шунтируют диодами, как показано на рис. 6.5.
На рис. 8.2 показаны условные обозначения основных логических элементов на электрических схемах, причем нельзя не согласиться, что отечественные обозначения намного логичнее, легче запоминаются и проще выполняются графически, чем западные. Поэтому западные обозначения логических элементов у нас так и не прижились (как, кстати, и многие другие, например, обозначения резисторов и электролитических конденсаторов), и приведены здесь только для справки.
Рис. 8.2.Обозначения основных логических элементов на схемах: вверху — отечественное, внизу — западное
Крайний справа элемент под наименованием «Исключающее ИЛИ» нам еще неизвестен, но скоро мы его будем изучать. В табл. 8.1 приведена разводка выводов микросхем, содержащих логические элементы — она одинакова для всех трех наиболее употребляемых логических типов (напомним, что для серий ТТЛ и быстродействующей КМОП разводка будет другая). Естественно, все элементы из одного корпуса абсолютно идентичны и взаимозаменяемы, поэтому для таких микросхем номера выводов корпуса и расположение выводов питания на схеме обычно не указывают.
Подробности
Мы будем использовать в схемах и простые одновходовые инверторы — это микросхема 561ЛН2, содержащая 6 таких инверторов в одном корпусе DIP-14. Разводка выводов у нее такая (первая цифра — вход, вторая — выход): 1–2, 3–4, 5–6, 9–8, 11–10, 13–12, питание обычное, т. е. «+» к выводу 14, «земля» — к выводу 7. Отметим, что точного импортного аналога этой микросхемы не существует, есть микросхема CD4049 в корпусе DIP-16, у которой разводка несколько другая, идентичная микросхеме, содержащей 6 просто буферных усилителей без инверсии (561ПУ4 или CD4050): питание (внимание!) — к выводу 1, «земля» — к выводу 8, сами же элементы расположены так: 3–2, 5–4, 7–6, 9—10, 11–12, 14–15, выводы 13 и 16 не задействованы (и, напомним, не должны никуда присоединяться!).
Есть, разумеется, и элементы с большим числом входов, пример их использования мы увидим далее. Я не буду приводить здесь разводку выводов других типов логических микросхем, т. к. эти данные всегда можно найти в справочниках, например в [9]. Отдельно следует упомянуть, что многие микросхемы КМОП прекрасно коммутируют аналоговые сигналы, иногда даже специально делается отдельный вывод для подключения отрицательного напряжения питания, чтобы можно было пропускать двуполярное напряжение. Причем пропускание это осуществляется как в направлении от входа к выходу, так и обратно (таковы микросхемы 561КТЗ, КП1 и КП2 или, скажем, специально для этого предназначенные микросхемы серии 590KR*). Указанные микросхемы прекрасно работают также и с цифровыми сигналами, т. е. являются универсальными. Немного подробнее мы их рассмотрим далее.
Другой часто употребляемой разновидностью логических микросхем (в основном, правда, в составе больших интегральных схем, БИС) являются элементы, имеющие выход с открытым коллектором (или с открытым истоком). Такой выход, как мы помним, имеет компаратор 554САЗ (см. главу 6). Есть такие элементы и с чисто логическими функциями: в КМОП-серии это CD40107 (561 ЛАЮ), а в ТТЛ — 7403 (133ЛА7). Как правило, они могут коммутировать значительный ток (до 50 мА, причем интересно, что для схемы с открытым истоком, типа ЛАЮ, нагрузочная способность по току с увеличением напряжения питания растет, а не падает).
Эти элементы удобны не только для коммутации мощной нагрузки, но и для объединения на общей шине в так называемое «проводное» или «монтажное» ИЛИ. В этом случае объединенные коллекторами (истоками) транзисторы разных устройств работают на общую нагрузку. В нормальном состоянии все они разомкнуты и на шине имеется потенциал логической единицы. Любое устройство может перевести шину в состояние логического нуля, замкнув выходной транзистор, при этом состояния всех остальных устройств уже не будут иметь значения (т. н. «захват шины»). Электрических конфл