Занимательная микроэлектроника — страница 43 из 117



На двух дешифраторах ИД1 можно построить аналогичный преобразователь двоичного кода в шестнадцатеричный. Его схема приведена на рис. 8.7, б. При значении входного кода менее 8 работает только верхняя микросхема — по таблице легко убедиться, что подача единицы на разряд х4 равносильна запрету на дешифрацию состояний входов х1х3. Эту функцию выполняет инвертор, который во входном диапазоне чисел от 0 до 7 на выходе всегда имеет уровень «1» и запрещает функционирование второй — нижней — микросхемы. Когда же входной код принимает значения 8 и выше, то на входе второй микросхемы оказывается фактически код, соответствующий тому же диапазону 0–7 (из входного кода вычитается восьмерка), и она выдает состояния для выходов 08h—0Fh всей схемы. При этом верхняя микросхема, в свою очередь, заперта состоянием единицы на х4 и неоднозначности не возникает. Выходы 8 и 9 у каждой из микросхем, естественно, не используются.


Мультиплексоры/демультиплексоры и ключи

Мультиплексоры/демультиплексоры — важный класс логических схем малой степени интеграции, о которых мы уже упоминали ранее, в связи с тем, что они прекрасно коммутируют не только цифровые, но и аналоговые сигналы. Мультиплексором называют схему, которая коммутирует единственный входной вывод напрямую с одним из нескольких выходных (как правило, четырех или восьми), в зависимости от поданного на нее двоичного кода (схема «1 —> 8»). Соответственно, демультиплексор выполняет обратную операцию — пропускает сигнал с одного из нескольких выводов на единственный выходной (схема «8 —> 1»).

Мультиплексоры в настоящее время делают на ключах — специальным образом включенных полевых транзисторах по технологии КМОП. Простейший такой ключ изображен на рис. 8.8, а. Он отличается тем, что может пропускать сигнал в обе стороны (на то транзисторы и униполярные), поэтому все КМОП-мультиплексоры одновременно являются также и демультиплексорами. Выпускаются также и микросхемы, содержащие просто наборы отдельных ключей, например, 590КН2 и аналогичные, мы еще с ними столкнемся.

Такие ключи часто входят в состав микросхем большей степени интеграции, например, в аналого-цифровых и цифроаналоговых преобразователях. Они практически заменили механические переключатели в коммутаторах телевизионных каналов, используются в цифровых переменных резисторах и т. д.

На рис. 8.8 б приведена для примера схема разводки выводов микросхемы 561КП2, которая представляет собой восьмиканальный мультиплексор/ демультиплексор (561КП1 делает то же самое, но содержит два четырехканальных мультиплексора). Эта микросхема коммутирует один из выводов, обозначенных как 0–7, к выводу Q, в зависимости от поданного на управляющие входы А — С двоичного кода. Очень важную функцию осуществляет вход Е (с инверсией, т. е. активный уровень на нем — низкий) — это вход разрешения, если на нем присутствует высокий уровень, то все каналы размыкаются (недостающее 9-е состояние, подробнее см. главу 19).



Рис. 8.8.Использование КМОП-ключей:

а — простейший униполярный ключ; б — разводка выводов мультиплексора/демультиплексора 561КП2


Как видите, специально для коммутации переменных аналоговых сигналов у 561КП2 предусмотрено подключение отрицательного питания (выв. 7), в случае цифровых этот вывод просто соединяется с «землей». Размах питания между выводами 7 и 16 не может превышать предельно допустимого для однополярного питания 561-й серии значения 15 В, т. е. двуполярное питание возможно до ±7,5 В. Однако уровень сигнала управления (как по входам А — С, так и Е) при этом отсчитывается от «цифровой земли», которая установлена потенциалом вывода 8. При этом аналоговый сигнал по амплитуде может достигать почти значений питания, однако для получения минимума искажений коммутируемые токи должны быть малыми.

Глава 9Применение цифровых микросхем малой степени интеграции

Перед тем, как съесть свой первый пейотный грибочек, Материалист поинтересовался у Поставщика (чернокожего джазиста): «А вообще-то эта дрянь опасна?». «Мать твою, — ответил он. — Индейцы тысячелетиями жрут ее в каждое полнолуние».

Роберт Аптон Уилсон «Космический триггер»


Из описания устройства логических элементов (см. главу 8) ясно, что любой логический вентиль есть, в сущности, не что иное, как усилитель. Только, в отличие от операционного усилителя, логический вентиль, во-первых, не имеет дифференциального входа, а во-вторых, обладает невысоким коэффициентом усиления по напряжению (порядка нескольких десятков для КМОП-элемента). Тем не менее не будет большой ошибкой представлять логический инвертор компаратором, у которого на неинвертирующий вход раз и навсегда подан определенный потенциал, примерно равный половине напряжения питания. И если ввести стабилизирующую обратную связь, которая выводит такой элемент в линейную область, то он вполне способен работать в аналоговом режиме.


Релаксационные схемы

Реально, конечно, аналоговые сигналы обрабатывать на логике не имеет никакого смысла, но это свойство логических вентилей широко используется на практике для построения т. н. релаксационных схем, продуцирующих самопроизвольные колебания, отличающиеся по форме от гармонических (прямоугольные, импульсные, треугольные и т. д.). Такая схема характеризуется наличием одновременно положительной (ПОС) и отрицательной (ООС) обратных связей, причем теория гласит, что для получения устойчивых колебаний необходимо, чтобы действие ООС отставало от действия ПОС. Рассмотрим некоторые схемы такого рода.


Генераторы прямоугольных колебаний

Генератор прямоугольных колебаний называют еще мультивибратором. Существует много схем мультивибраторов, в том числе на цифровой логике (признаюсь, что мне даже невдомек, зачем в пособиях их обычно приводится так много, если они все равно делают в принципе одно и то же). Мы рассмотрим одну из них, выбранную с точки зрения минимального числа компонентов, и два ее варианта с управлением, разница между которыми заключается в используемых элементах.

Схема по рис. 9.1, а — базовая. При включении питания она начинает работать сразу и выдает меандр с размахом от 0 до Uпит. Частота на выходе определяется параметрами R1 и С1: период колебаний Т ~= 2R1C1. Резистор R2 в этом практически не участвует и нужен только для того, чтобы оградить защитные диоды микросхемы от перегрузки током разряда конденсатора С1. Величина его может изменяться от сотен ом до нескольких килоом. Величина же резистора R1 может изменяться от единиц килоом до 10 МОм, что позволяет избежать использования электролитических конденсаторов при малых частотах (напомним, что они очень нестабильны при работе во времязадающих цепях). Поэтому конденсатор С1 может применяться любой, с емкостью, начиная от нескольких десятков пикофарад, но только не электролитический. Практически указанные параметры элементов обеспечивают частоты от сотых долей герца до верхней границы рабочей частоты КМОП-микросхем в 1–2 МГц, а для быстродействующей КМОП-логики и выше, вплоть до 10 МГц и более.



Рис. 9.1.Схемы мультивибратора на логических элементах:

а — базовая схема на инверторах; б — схема на двухвходовых элементах с управлением; в — диаграмма состояний схемы на двухвходовых элементах «И-НЕ»; г — диаграмма состояний схемы на двухвходовых элементах «ИЛИ-НЕ»


Если в схеме рис. 9.1, б объединить входы логических элементов между собой, то она превратится в схему по рис. 9.1, а (чаще всего именно так базовую схему на практике и выполняют). Но нередко возникает задача остановить генерацию на время и при этом обеспечить совершенно определенный логический уровень на выходе генератора. Для этого предусматривают дополнительные входы. Диаграммы уровней на выходе в зависимости от состояния входов для разных типов логических элементов приведены на рис. 9.1, в и г.

Запоминать эти диаграммы нет необходимости, если обратиться к рис. 8.3, а. Из него следует, как описано в главе 8, что единица на входе «И-НЕ» и ноль на входе «ИЛИ-HE» являются разрешающими уровнями, следовательно, при этом наша схема будет функционировать как при объединении этих входов, т. е. подобно схеме на рис. 9.1, а. При запрещающих же уровнях на входе уровень на выходе будет устанавливаться так, как если бы никаких RC-цепочек не существовало.

Простейшие применения схемы с управлением — решение задачи приостановки генератора на время переходных процессов при включении питания, для чего к управляющему входу нужно подключить простейшую интегрирующую RC-цепочку. На рис. 9.2 показан другой вариант— схема звуковой сигнализации на микросхеме 561ЛA7 и одном транзисторе. Это пример случая, когда требуется определенный логический уровень при выключенной генерации, чтобы избежать протекания постоянного тока через динамик и не ставить при этом разделительный конденсатор.

Схема выдает сигнал около 500 Гц с периодом повторения около 0,5 с, если на управляющий вход подать сигнал высокого уровня. При низком уровне сигнала на этом входе, на выходе всей схемы также будет низкий уровень и постоянный ток через динамик не потечет. Транзисторный каскад лучше питать отдельным напряжением (например, нестабилизированным от входа стабилизатора питания микросхемы), потому что тогда достаточно мощные импульсы тока через динамик будут фильтроваться стабилизатором и не окажут вредного воздействия на остальные элементы схемы. При питании цепи динамика и микросхемы от одного и того же источника лучше разделить их «развязывающим» RC-фильтром, как показано на рис. 9.2 пунктиром.