Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы — именно во столько раз приблизительно снизится их общее сопротивление по отношению к меньшему.
Проверить это легко: рассмотрим ситуацию, когда сопротивления равны. В этом случае одно сопротивление составляет 1/2 часть их суммы, т. е. общее сопротивление должно снизиться вдвое, как и есть на самом деле. Возьмем более сложный случай: одно сопротивление пусть имеет номинал 3,3 кОм, второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3+6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2 кОм). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате 2,22 кОм, что очень неплохо.
В большинстве случаев нам такой точности и не потребуется — помните, что и сами сопротивления имеют разброс по номиналу, и для обычных схем допуски на номиналы стандартных компонентов могут быть довольно значительными (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные параметры, то с помощью стандартных компонентов вы все равно этого не добьетесь, т. к. параметры, образно выражаясь, будут «гулять» (в пределах допусков, естественно) от дуновения ветерка из форточки. В таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на 1,1 кОм— не наш метод!
Теперь понятно для чего служат эквивалентные схемы: вы просто включаете внутренние сопротивления в вашу цепь и учитываете их при расчетах, как будто они там специально поставлены. Отметим, что с помощью эквивалентных схем можно представить в принципе любой радиоэлектронный компонент — иногда это очень удобно.
Теперь нам несложно понять, какое поведение ожидается от амперметра и вольтметра. Амперметр всегда включается в измеряемую цепь последовательно, ведь через него должен проходить тот же ток, что и во всей цепи. Но если он будет иметь большое собственное сопротивление, то внесет существенную погрешность, тогда на нем будет падать заметная часть напряжения, это уменьшит падение напряжения на остальных резисторах и суммарный ток.
По сути реальный амперметр является, как это не парадоксально, вольтметром — он измеряет падение напряжения на его собственном внутреннем сопротивлении, меняя значение которого (устанавливая т. н. шунты — специальные резисторы), вы переключаете диапазоны измерения. Потому сделать его сопротивление равным нулю не получается, но удается сделать значение это достаточно малым, чтобы позволить себе пренебречь его влиянием.
Заметки на полях
Вот это-то замечательное свойство современных амперметров одновременно и является их самым слабым местом: достаточно перепутать и включить амперметр не последовательно, а параллельно источнику питания (подобно вольтметру), как через него, в полном соответствии с законом Ома, потечет огромный ток, ограниченный только возможностями источника. Действительно, типичное сопротивление амперметра составляет порядка нескольких миллиом, что даже при 5-вольтовом источнике дает токи в 1000 А и более! На самом деле никакой нормальный источник питания (включая даже бытовую электросеть) такого тока отдать не сможет, но того, что сможет, будет достаточно, чтобы прибор сгорел. Однако не отчаивайтесь — обычно в хороших мультиметрах внутри стоит плавкий предохранитель, а в самых качественных — даже самовосстанавливающийся. Если ваш прибор вдруг перестал показывать ток (а вы можете и не заметить, как случайно подсоединили его в режиме измерения тока к выводам питания), то прежде всего разберите его и проверьте этот самый предохранитель. Кстати, именно для того, чтобы дополнительно защитить мультиметр от описанных неприятностей, клемму для подключения щупа в режиме измерения тока всегда делают отдельно.
Наоборот, вольтметр подключается всегда параллельно, и потому, чтобы не вносить погрешности, должен иметь как можно большее сопротивление. По сути аналоговый вольтметр является амперметром, измеряя тот мизерный ток, который ответвляется из внешней цепи на это большое сопротивление. Однако это относится только к традиционным стрелочным приборам — современные вольтметры, построенные на интегральных схемах, ток от измеряемой цепи практически не потребляют, и потому много ближе к идеалу, чем амперметры. Это касается не только приборов, измеряющих напряжение (например, мультиметров в режиме измерения напряжения — рис. 1.6), но и других устройств, которые со стороны схемы выглядят, как вольтметры, например, осциллографов, различных аналогово-цифровых преобразователей и т. п.
Рис. 1.6. Современный мультиметр
Из-за этих свойств испортить мультиметр в режиме вольтметра гораздо труднее— если вы его по ошибке включите последовательно, то перестанет работать схема, а не прибор. Однако теоретически сжечь можно и вольтметр, если его включить на предел в 0,2 В, а подсоединить к сети 220 В. Поэтому, если вы не располагаете прибором с автоматическим выбором предела измерения, будьте внимательны, соблюдая и тип измеряемого напряжения (постоянное или переменное), и его возможный предел. На самом деле современные мультиметры обычно выдерживают многократное превышение предельного значения (например, 250 В на установленном пределе 2 В), но когда вы не знаете заранее, каково может быть напряжение в измеряемой точке, то начинать все же надо всегда с самого большого значения и постепенно его снижать.
Глава 2Переменный ток, мощность и конденсаторы
Роман Петрович, — сказал он. — Будьте любезны, включите, пожалуйста, рубильник.
А. и Б. Стругацкие «Понедельник начинается в субботу»
Электрохимические (гальванические) элементы, с которыми мы экспериментировали в главе 1, есть источники постоянного напряжения. Определение «постоянное» не означает, что такое напряжение вообще не меняется. Отнюдь— типичный график зависимости напряжения от времени для гальванических элементов разных типов приведен на рис. 2.1 (это так называемые разрядные кривые). Причем зависит оно не только от времени. Отдельные пики на графиках относятся к моментам, когда нагрузка отключалась, при этом напряжение элемента скачкообразно росло, а затем, при подключении ее, снова падало — теперь вы знаете, что это происходит за счет внутреннего сопротивления источника, которое, как видно из графика, само может меняться по мере разряда элемента.
Рис. 2.1.Зависимость напряжения от времени для гальванических элементов различного типа при токе нагрузки 100 мА:
1 — литиевый; 2 — алкалайновый; 3 — марганец-цинковый.
(По данным И. Подушкина, «Радио», № 2, 2004)
Заметки на полях
Этот график, между прочим, хорошо иллюстрирует то положение, что наиболее выгодными по соотношению цена/продолжительность работы являются щелочные («алкалайновые») элементы: обычные марганец-цинковые примерно в два раза дешевле, но имеют в три раза меньший срок службы, а единственное преимущество очень дорогих литиевых — в том, что их напряжение меньше снижается за все время разряда (зато потом быстро падает до нуля).
Итак, постоянное напряжение на деле может быть совсем и не постоянным. Даже для самых лучших источников питания оно обязательно немножко «гуляет» — в зависимости от тока нагрузки и ее характера. Что же тогда называть переменным напряжением? Строгого определения, как ни странно, не существует— часто приводимое в учебниках выражение «напряжение, которое изменяется с течением времени», как видите, прекрасно подходит и к нашим батарейкам, хотя они являются типичными источниками постоянного напряжения. Поэтому мы договоримся переменными называть такие напряжения или токи, которые изменяются во времени, во-первых, периодически, во-вторых, делают это «сами по себе», без влияния со стороны нагрузки.
Замечание
Строго говоря, называть гальванические элементы батарейками неправильно— батареей называют источник, составленный из нескольких отдельных элементов. Но так уж повелось в разговорном языке, да потом не всегда точно известно, является ли данный элемент именно элементом или батареей (например, пальчиковые батарейки АА — это элемент, 9-вольтовая «Крона» — батарея).
Слово «периодически» означает, что, начиная с какого-то момента времени, форма графика такой величины в целом повторяется снова и снова. Время повтора называется периодом переменной величины. Выражение «повторяется в целом» означает, что изменения могут быть, но либо непринципиальные (скажем, за счет наложения шумов), либо период наступления этих изменений много больше периода самого сигнала.
Заметки на полях
Впрочем, и такое определение не будет строгим, — очевидное исключение представляют собой электрические колебания в устройствах для записи и воспроизведения звука, т. к. ни строгой периодичности, ни повторяемости вы там не найдете, если не рассматривать, конечно, звук одиночной струны или камертона. И тем не менее преобразованные в электричество звуковые колебания — типичный пример переменного тока. На чем и успокоимся, поскольку это далеко не единственный случай, когда очевидным вещам невозможно дать строгого определения, скорее наоборот— надо еще