t3 - t2 пропорциональна входному напряжению, согласно соотношению:
(t3 - t2)/(t2 - t1) = Uвх/Uоп
где промежуток времени t2 - t1 жестко задан внешним тактовым генератором.
Описанная схема рассчитана для получения разрешающей способности 12 разрядов или 4096 градаций. Максимальная частота отсчетов при тактовой частоте 1 МГц составит 122 Гц. Исходя из этого выбраны величины сопротивлений и емкость конденсатора. Точность преобразования напрямую зависит от стабильности резисторов, поэтому их нужно выбирать с точностью не хуже 0,1 %, в этом случае абсолютная точность может достигнуть 10 разрядов без дополнительной калибровки. Однако Uоп тоже должно иметь не меньшую стабильность.
По такому принципу устроены АЦП 572ПВ2 и 572ПВ5, которые мы будем подробнее рассматривать далее. Ранее были широко распространены ПНЧ — преобразователи напряжение-частота (в основном на основе микросхемы 555, см. главу 9), однако большинство их реализаций обладает тем же недостатком, что и однократный интегратор, т. е. их точность зависит от качества компонентов напрямую. Значительно более точные преобразователи (до 24 двоичных разрядов) получаются на основе интегрирующих преобразователей, которые также используют принцип двойного интегрирования, но на их выходе получается не интервал времени, который еще нужно сосчитать, а число-импульсный код, т. е. число импульсов за определенный промежуток времени, пропорциональное входному напряжению. АЦП такого типа называются еще дельта-сигма-преобразователями или АЦП с уравновешиванием заряда. Они широко распространены в интегральном исполнении, большинство наиболее высокоразрядных АЦП построены именно так.
Цифровые термометры конструировать самостоятельно имеет практический смысл по крайней мере по двум причинам. Во-первых, фирменные приборы для жилых или производственных помещений обычно имеют невзрачный дизайн с ЖК-индикаторами и корпусами белого или «компьютерного» серого цвета. Во-вторых, рынок подобных бытовых устройств вообще достаточно беден, чему есть одна веская причина: сделать дешевый, достаточно точный и притом универсальный цифровой термометр, который, подобно традиционным спиртовым, можно и в воду опускать, и на мороз зимой выставить, очень непросто. Терпеливый радиолюбитель вполне может сделать конструкцию куда лучше фирменной — удобную, красивую и приспособленную под свои нужды, а «приставить» к такому термометру измеритель влажности, давления и еще чего угодно — вопрос только денег, и мы займемся этим позднее.
АЦП 572ПВ2 и ПВ5
Основой принципиальной схемы нашего термометра будет выпускающаяся уже более 20 лет очень удачная разработка 572ПВ2 (ICL7107), которая представляет собой АЦП двойного интегрирования с выходом в параллельном семисегментном коде с расчетом на 3,5 десятичных разряда.
Подробности
Что означает цифра 3,5 (в спецификациях нередко пишут в форме 31/2) — не может же использоваться полразряда? Действительно, при полном выходном диапазоне этой микросхемы, который составляет число ±1999, нужно подключать 4 индикатора, однако старший из них будет индицировать только цифру «1» (и, при необходимости, знак «минус»). Число 31/2, согласно договоренностям, достигнутым еще в 1970-е годы, и означает, что старший разряд служит только для индикации «0» или «1». Если прибор в старшем разряде индицирует больше знаков (обычно по образцу 3999 или 5999), то такое разрешение обозначается, как 33/4. Конечно, целая часть может меняться, в зависимости от общего числа разрядов (51/2, 41/2, и т. д.). Заметим, что точность с разрешающей способностью, вообще говоря, не связана, и почти всегда ниже последней — например, у мультиметра, который лежит передо мной, разрешающая способность также 3,5, что эквивалентно почти 11 двоичным разрядам (1/2048), но погрешность при измерении напряжения 0,2 %, что составляет всего 9 двоичных разрядов (1/512). При соблюдении некоторых (довольно жестких) требований к подаваемым сигналам и построению схемы точность обсуждаемого АЦП может быть эквивалентна разрешению — тем же 11 двоичным разрядам, т. е. приведенная погрешность составит 0,05 %, что очень и очень неплохо.
Основная (типовая) схема включения микросхемы 572ПВ2 показана на рис. 10.7.
Рис. 10.7.Вариант типового включения микросхемы 572ПВ2 (ICL7107) в корпусе DIP-40
Микросхема имеет два собственных питания: положительное 5 В (от 4,5 до 6 В) и отрицательное, которое может варьироваться в довольно большом диапазоне от -9 до -3,5 В (это обстоятельство позволяет при необходимости использовать для отрицательного питания не слишком стабильные преобразователи-инверторы, см. главу 4). Светодиодные индикаторы можно подключать напрямую, без каких-либо дополнительных резисторов (ток через сегмент при этом равен 5–8 мА), при этом им лучше обеспечить отдельное питание. Управление индикаторами здесь осуществляется коммутацией на «землю», поэтому нужен индикатор с общим анодом. Однако выходы управления дисплеем не являются выходами «с открытым коллектором» (точнее — истоком), а представляют собой обычный КМОП-выход, у которого вытекающий ток в состоянии логической единицы может составить примерно 0,5 мА, а при логическом нуле, как уже говорилось, он равен примерно 5–8 мА (для вывода 19, который управляет одновременно двумя сегментами при засветке символа «1» в старшем разряде, этот ток составляет 10–16 мА). Эти параметры следует учитывать при управлении индикаторами через внешние ключи, если требуется повышенное напряжение или ток. До 7 В амплитудного значения питания индикаторов, как показывает опыт, микросхема выдерживает и без ключей.
Выпускается совершенно идентичная по функциональности и практически совпадающая по разводке выводов микросхема 572ПВ5 (ICL7106), которая отличается только тем, что она предназначена для управления ЖК-индикаторами, а не светодиодными. Просто заменить ЖК-индикатор на светодиодный и наоборот нельзя потому, что, как вы знаете из главы 3, для управления ЖК-индикаторами требуется переменное напряжение, иначе отключенные сегменты «зависнут» в поглощающем свет состоянии. Поэтому при замене ПВ2 на ПВ5 отличие в схеме заключается в том, что вывод 21 представляет собой не «цифровую землю» (GNDц, а подсоединяется к общему выводу ЖК-индикатора. Отдельное питание тогда, естественно, не требуется.
Особый вопрос в этом случае представляет засветка запятой, если ее по ходу дела надо «передвигать» или просто «гасить». В варианте со светодиодами это несложно делать абсолютно автономно от микросхемы, отдельным ключом, а для ЖК придется для нее также обеспечить подобный режим управления с помощью переменного напряжения, иначе при подаче постоянного напряжения она просто засветится навсегда и к тому же будет резко выделяться большим контрастом. Разработчики рекомендуют для этой цели подключить к выходу 21 обычный КМОП-инвертор. При этом (как и в случае подключения внешнего генератора, см. далее) в качестве «цифровой земли» в ПВ5 следует использовать вывод 37 (TEST).
Для обеих микросхем опорное и входное напряжения не должны выходить за пределы, на 1 В отступающие от потенциалов +Uпит и — Uпит. Для микросхемы ПВ2, вообще говоря, требуется двуполярное питание, т. к. «цифровая земля» в GNDц должна иметь общую точку с аналоговой частью для внутреннего согласования уровней управляющих сигналов. Однако можно обойтись одним питанием +5 В (подсоединив вход — Uпит к «земле»), если опорное и измеряемое напряжения находятся в пределах от 1 до 4 В.
Есть и более современные варианты этих разработок, например, с очень малым потреблением, но параметры описанных микросхем и так достаточно хороши: при тактовой частоте 50 кГц время преобразования составляет 0,32 с (16000 периодов тактовой частоты), а потребление при этом не превышает 0,6 мА (не считая, конечно, потребления индикаторов в LED-варианте).
Удобство микросхем ПВ2 и ПВ5 заключается и в том, что они оперируют с двуполярными входными напряжениями, автоматически определяя и высвечивая знак. На схеме рис. 10.7 показан вариант с общими «землями». Диапазон входного измеряемого напряжения определяется опорным, с помощью которого и задается масштаб, при этом опорное должно находиться в пределах 0,1–1 В, а измеряемое может по абсолютной величине превышать его, в соответствии с разрешающей способностью, ровно в два раза. Если, например, опорное напряжение равно 1 В, то измеряемое может быть в пределах ±2 В (точнее ±1,999 В), а в общем случае выходной код определяется выражением N = 1000∙(Uвх/Uon). Если значение входного напряжения превышает предел +2Uon, младшие три разряда гаснут, а если снижается ниже -2Uon — гаснет все, кроме знака «минус».
Подробности
Оба входных напряжения— опорное и измеряемое— могут быть «плавающими», без общей «земли», единственное требование, чтобы их значения не выходили за пределы питания (а по абсолютной величине они, естественно, должны соответствовать указанным ранее требованиям). В этом случае вывод 32 («аналоговая земля») не используется. На этом выводе тогда присутствует напряжение, равное (U+пит — 2,8) В. При необходимости его можно выбрать в качестве опорного (не само напряжение относительно «земли», которая в данном случае есть довольно условное понятие, а именно разность между положительным питанием и выводом 32). Однако стабильность этого напряжения невелика, и так рекомендуется поступать только в уж очень экономичных схемах. Особенно это плохо в случае ПВ2, в которой выходные каскады за счет большого тока сильно (и неравномерно по времени из-за разного числа подключенных сегментов) нагревают кристалл и это напряжение начинает «плавать».