Так, в рассматриваемых далее Atmel AVR конвейер двухступенчатый: когда очередная команда загружается и декодируется, предыдущая уже выполняется и пишет результаты. В AVR это позволило выполнять большинство команд за один такт (кроме команд ветвления, о чем подробнее будет рассказываться в главе 13).
Главное устройство в МП, которое связывает все узлы в единую систему, — внутренняя шина данных. По ней все остальные устройства обмениваются сигналами. Например, если МП требуется обратиться к внешней памяти, то при исполнении соответствующей команды на шину данных выставляется необходимый адрес, от устройства управления поступает через нее же запрос на обращение к нужным портам ввода/вывода. Если порты готовы, адрес поступает на выходы портов (т. е. на соответствующие выводы контроллера), затем по готовности принимающий порт выставляет на шину принятые из внешней памяти данные, которые загружаются в нужный регистр, после чего шина данных свободна. Для того чтобы все устройства не мешали друг другу, все это строго синхронизировано, при этом каждое устройство имеет, во-первых, собственный адрес, во-вторых, может находиться в трех состояниях: работать на ввод, на вывод или находиться в третьем состоянии, не мешая другим работать.
Под разрядностью МП обычно понимают разрядность чисел, с которыми работает АЛУ, соответственно, такую же разрядность имеют и рабочие регистры. Например, все ПК-процессоры от i386 до последних инкарнаций Pentium были 32-разрядными, последние модели от Intel и AMD стали 64-разрядными.
Большинство микроконтроллеров общего назначения 8-разрядные, но есть и 16- и 32-разрядные. При этом внутренняя шина данных может иметь и больше разрядов, например, чтобы одновременно передавать и адреса и данные.
Распределение рынка МК в первые годы тысячелетия было таким: немного меньше половины выпускаемых изделий составляют 8-разрядные кристаллы, а вторую половину поделили между собой 16- и 32-разрядные, причем доля последних неуклонно растет за счет 16-разрядных. Выпускаются даже 4-разрядные, потомки первого i4004, которые занимают не более 10 % рынка, но что любопытно, эта доля снижается очень медленно.
Заметки на полях
Обычно тактовая частота универсальных МК невелика (хотя типичному инженеру 1980-х, когда ПК работали на частотах не выше 6 МГц, она показалась бы огромной) — порядка 8—16 МГц, иногда до 24 МГц или несколько более. И это всех устраивает: дело в том, что обычные МК и не предназначены для разработки быстродействующих схем. Если требуется быстродействие, то используется другой класс интегральных схем — ПЛИС, «программируемые логические интегральные схемы». Простейшая ПЛИС представляет собой набор никак не связанных между собой логических элементов (более сложные могут включать в себя и некоторые законченные узлы, вроде триггеров и генераторов), которые в процессе программирования такого чипа соединяются в нужную схему. Комбинационная логика работает гораздо быстрее тактируемых контроллеров, и для построения различных логических схем в настоящее время применяют только ПЛИС, от проектирования на «рассыпухе» в массовых масштабах уже давно отказались. Еще одно преимущество ПЛИС — статическое потребление энергии для некоторых серий составляет единицы микроватт, в отличие от МК, которые во включенном состоянии потребляют всегда (если не находятся в режиме энергосбережения). В совокупности с более универсальными и значительно более простыми в обращении, но менее быстрыми и экономичными микроконтроллерами, ПЛИС составляют основу большинства массовых электронных изделий, которые вы видите на прилавках. В этой книге мы, конечно, рассматривать ПЛИС не будем — в любительской практике, в основном из-за дороговизны соответствующего инструментария и высокого порога его освоения, они не используются, и для конструирования одиночных экземпляров приборов даже для профессиональных применений нецелесообразны. А вот если вы закажете разработку некоего прибора профессиональной «конторе», имеющей нужные инструменты и разработчиков с соответствующей квалификацией— почти всегда получите что-нибудь на базе ПЛИС, потому что в конечном итоге так оказывается дешевле.
Если подробности внутреннего функционирования МП нас не очень волнуют (достаточно иметь общее представление о структуре микропроцессорного ядра, чтобы понимать, что именно происходит при выполнении команд), то обмен с внешней средой нас как раз интересует во всех деталях. Для этого служат порты ввода/вывода (I/0-port, от Input/Output). В этом термине имеется некоторая неопределенность, т. к. «порт ввода/вывода» в МК с точки зрения его внутреннего устройства обозначает прежде всего некий регистр для доступа к компонентам, внешним по отношению к вычислительному ядру. А это все узлы, которыми непосредственно управляет пользователь (от таймеров и последовательных портов до регистра флагов и управления прерываниями). Кроме разве что ОЗУ, доступ к которой обеспечивается специальными командами, все остальное в контроллере управляется через порты ввода/вывода.
Однако точно так же называются и внешние порты ввода/вывода, для обмена с «окружающей средой» (управляются они, естественно, внутренними портами ввода/вывода). На схеме рис. 11.2 они показаны в количестве трех (А, В и С). В разных МП их может быть и больше, и меньше. Еще важнее число выводов этих портов, которое чаще всего совпадает с разрядностью процессора (но не всегда, как это было у 8086, который имел внутреннюю 16-разрядную структуру, а внешне выглядел 8-разрядным). Если мы заставим 8-разрядные порты «общаться», например, с внешней памятью, то на двух из них можно выставить 16-разрядный адрес, а на оставшемся— принимать данные. А как быть, если портов два или вообще один? (К примеру, в микроконтроллере Atmel AVR 2313 портов формально два, но один усеченный, так что общее число линий составляет 15.) Для этого все внешние порты в МП всегда двунаправленные. Скажем, если портов два, то можно сначала выставить адрес, а затем переключить их на вход и принимать данные. Естественно, для этого порты должны позволять работу на общую шину, т. е. либо иметь третье состояние, либо выход с общим коллектором для объединения в «монтажное ИЛИ».
Варианты для обоих случаев организации выходной линии порта показаны на рис. 11.3, где приведены упрощенные схемы выходных линий микроконтроллеров семейства 8048 — широко когда-то использовавшегося предшественника популярного МК 8051 (например, 8048 был выбран в качестве контроллера клавиатуры в IBM PC). В самом 8051 построение портов несколько сложнее (в частности, вместо резистора там полевой транзистор), но для уяснения принципов работы это несущественно.
По первому варианту (рис. 11.3, а) в МК 8048 построены порты 1, 2 (всего там три порта). Когда в порт производится запись, то логический уровень поступает с прямого выхода защелки на статическом D-триггере на вход схемы «И», а с инверсного — на затвор транзистора VT2. Если этот уровень равен логическому нулю, то транзистор VT1 заперт, a VT2 открыт, на выходе также логический нуль. Если уровень равен логической единице, то на время действия импульса «Запись» транзистор VT1 открывается, а транзистор VT2 запирается (они одинаковой полярности). Если на выходе присутствует емкость (а она всегда имеется в виде распределенной емкости проводников и емкости входов других компонентов), то через VT1 протекает достаточно большой ток заряда этой емкости, позволяющий сформировать хороший фронт перехода из «0» в «1». Как только импульс «Запись» заканчивается, оба транзистора отключаются, и логическая единица на выходе поддерживается резистором R1. Выходное сопротивление открытого транзистора VT1 примерно 5 кОм, а резистора — 50 кОм. Любое другое устройство, подключенное к этой шине, при работе на выход может лишь либо поддержать логическую единицу, включив свой подобный резистор параллельно R1, либо занять линию своим логическим нулем — это, как видите, и есть схема «монтажное ИЛИ». При работе на вход состояние линии просто считывается со входного буфера (элемент «В» на рис. 11.3, а).
Рис. 11.3. Упрощенные схемы портов ввода/вывода МК 8048:
а — портов 1 и 2; б — порта 0
Второй же вариант, по которому устроен портО (рис. 11.3, б), — это обычный выходной каскад КМОП с третьим состоянием, т. е. такой порт может работать на выход, только полностью занимая линию, остальные подключенные к линии устройства при этом должны «смиренно внимать» монополисту, воспринимая сигналы. Это обычно не создает особых трудностей и схемотехнически даже предпочтительно (ввиду симметрии выходных сигналов и высокого сопротивления для входных). Единственная сложность возникает при сопряжении такого порта с линией, работающей по первому варианту, т. к. при логической единице на выходе могут возникнуть электрические конфликты, если кто-то попытается выдать в линию логический нуль. Для обеспечения работы трехстабильного порта по схеме «монтажное ИЛИ» (в том числе для их параллельной работы) применяют хитрый прием: всю линию «подтягивают» к напряжению питания с помощью внешнего резистора (во многих МК существует встроенный отключаемый резистор, установленный аналогично R1 в схеме рис. 11.3, а), и нормальное состояние всех участвующих трехстабильных портов — работа на вход в третьем состоянии, тогда на линии всегда будет логическая единица. На выход же линию переключают только когда надо выдать логический нуль, в этом случае, даже при одновременной активности нескольких портов, конфликтов не возникнет.
В 1965 г. в Иллинойском университете был запущен один из самых передовых компьютеров по тому времени — ILLIAC–IV. Это был первый компьютер, в котором была применена быстрая память на микросхемах — каждый чип (производства Fairchild Semiconductor) имел емкость 256 бит, а всего было набрано 1 Мбайт. Стоимость этой памяти составила ощутимую часть от всей стоимости устройства, обошедшегося заказчику— NASA— в $31 млн. Через 10 лет один из первых персональных компьютеров Altair 8800 (1975 г.), продававшийся в виде набора «сделай сам», при стоимости порядка $500 имел всего 256 байт (именно байт