Занимательная микроэлектроника — страница 68 из 117

  ;горим красным

  rjmp   continue  ;все готово

dark:

        cbi     PortC,7  ;гасим оба

  cbi     PortB,5

continue:

С используемыми здесь командами установки и сброса отдельных бит (sbi, sbr и т. п.) мы плотнее познакомимся чуть позже, а сейчас задержимся на ключевой команде всего алгоритма — sbrs, что расшифровывается, как Skip if Bit in Register is Set («пропустить, если бит в регистре установлен»). Имеется в виду, что по состоянию бита (если он установлен в единицу) пропустить нужно следующую команду. В качестве последней обычно также выступает одна из команд ветвления, как здесь, но далеко не всегда. Удобно, например, организовывать выход из прерывания или подпрограммы по какому-то условию, если поставить следующей после sbrs команду reti или, соответственно, ret (примеры мы еще встретим).

Противоположная по логике процедура записывается, как sbrc (Skip if Bit in Register is Cleared — «пропустить, если бит в регистре очищен», т. е. равен нулю). Наконец, есть еще пара аналогичных команд — sbis и sbic, которые применяются, когда нужно отследить состояние бита в регистре ввода/вывода (I/O), а не в регистре общего назначения. Все эти команды мы будем активно применять в дальнейшем.

Наконец, в самой обширной группе команд ветвления имена начинаются с букв Ьг (от слова branch — «ветка»). Это команды условного перехода, которые считаются одними из самых главных в любой системе программирования, т. к. позволяют организовывать циклы — базовое понятие, программистских наук. По смыслу все эти команды сводятся к банальному if… then («если… то»). Мы будем пользоваться лишь частью этих команд, потому что они во многом взаимозаменяемы, и здесь подробно разберем только одну пару команд. Смысл остальных вам будет понятен по ходу дела.

Это наиболее часто употребляемая пара brne (Branch if Not Equal, «перейти, если не равно») и breq (Branch if Equal, «перейти, если равно»). Уже из смысла этих команд понятно, как они пишутся: после команды следует метка, на которую нужно перейти. Вопрос только такой: откуда здесь берется собственно условие? Для этого все команды ветвления обязательно употребляют в паре с одной из команд, устанавливающих флаг нуля Z в регистре флагов SREG. Обычно (и это наиболее наглядно) для этой цели служит команда ср (от compare— «сравнить»), которая сравнивает регистры, или cpi («сравнить с непосредственным значением»). Например, вот так будет вы глядеть простейший цикл, в котором переменная temp последовательно принимает значения от 1 до 10:

   clr temp  ;обнулить temp

back_loop:

inc temp  ;увеличиваем temp на 1

<что-то делаем, необязательно с помощью temp>

     cpi temp,10

    brne back_loop

Обратите внимание: если надо, чтобы temp начинала с нулевого значения, то фрагмент «что-то делаем» следует вставить до команды inc, но тогда последним рабочим значением temp в цикле будет 9, а не 10, а после выхода из процедуры — все равно 10.

Другой нюанс заключается в том, что удобная команда сравнения с непосредственным числом cpi работает только для регистров с номерами от 16 до 31 (как и многие другие команды работы с непосредственными значениями, например, ldi). По этой причине рабочие переменные (temp, счетчики) всегда желательно выбирать из этой половины регистрового файла (в примерах в этой книге, как и в «аппнотах», кстати, обычно temp — это r16, хотя и не всегда). Положение осложняется тем, что регистры из старшей половины наиболее дефицитны: последние шесть из них объединены в пары для работы с памятью (см. далее) и некоторых других операций, r24 и r25 задействованы в команде adiw и т. п. Если переменных не хватает, то регистр из первой половины регистрового файла (допустим, это r15) в аналогичном цикле приходится использовать с парой команд:

ldi   temp,10

ср  r15,temp

Иногда проще построить декрементный цикл, в котором переменная уменьшается от заданного значения до нуля:

     ldi temp,10  ;загружаем 10 в temp

back_loop:

     dec temp  ;уменьшаем temp на 1

<что-то делаем с помощью temp>

  brne back_loop

Как видите, здесь вообще ничего сравнивать не требуется, потому что команда dec при достижении нуля сама установит флаг Z (то же относится к команде tst temp, которая эквивалентна команде cpi temp, 0). И если даже выбрать регистр из первой половины, то лишняя команда понадобится не в каждом цикле, а только один раз для загрузки предварительного значения:

ldi temp,10  ;загружаем 10 в temp

mov r15,temp  ;загружаем 10 в r15 и далее его используем

;в команде dec

Один важный нюанс в работе всех команд перехода заключается в том, что они могут занимать непредсказуемое количество циклов (1 или 2), в зависимости от того, выполняется условие или нет. В AVR реализован конвейер команд, который «тупо» полагает, что следующей будет выполняться команда сразу после команды перехода. Естественно, если ветвление необходимо (в большинстве случаев), конвейер останавливается на один лишний такт, в течение которого происходит выборка адреса перехода. Однако этот недостаток с лихвой компенсируется тем, что за счет конвейера почти все остальные команды выполняются за один такт— недостижимая мечта для многих других типов контроллеров (например, в популярном до сих пор семействе 8051, выпущенном еще в начале 80-х, команда выполняется как минимум за 12 тактов, хотя некоторые современные клоны этого семейства могут работать и быстрее).


Арифметика и логика в интерпретации AVR

Арифметические операции для AVR на первый взгляд могут показаться реализованными довольно странно для пользователя, привыкшего к бытовому представлению об арифметике, но на самом деле получается очень стройная система.

Не вызывают никаких возражений только очевидные операции: add R1,R2 (сложить два регистра, записать результат в первый) и sub ri,r2 (вычесть второй из первого, записать результат в первый). Но если вдуматься, то вопросов возникает множество: а что будет, если сумма превышает 255? Или разность меньше нуля? Куда девать остатки? Оказывается, все продумано: для учета переноса есть специальные команды adcи sbc соответственно. Корректная операция сложения двух 16-разрядных чисел будет занимать две команды:

add RL1,RL2

adc RH1,RH2

Здесь RL1 и RL2 содержат младшие (low) байты слагаемых, a RH1 и RH2 — старшие (high). Если при первой операции результат превысит 255, то перенос запишется в специальный флаг переноса (в регистре флагов sreg обозначается буквой С) и учтется при второй операции. Аналогично выглядит операция вычитания.

Постойте, но мы же вовсе не хотели складывать 16-разрядные числа! Мы хотели всего лишь сделать так, чтобы в результате сложения 8-разрядных чисел получился правильный результат, пусть он займет два байта. На что нам тогда старший байт второго слагаемого, если его вообще в природе не существует? Конечно, можно сделать его фиктивным, загрузив в некий регистр нулевое значение, но это только кажется, что регистров у AVR много (аж 32 штуки), на самом деле они довольно быстро расходуются под переменные и разные другие надобности, и занимать целый регистр под фиктивную операцию, пусть даже на один раз, как-то некрасиво. Потому «экономная» операция сложения 8-разрядных чисел будет выглядеть таким образом:

add RL1,R2

brcc add_8

inc RH1

add_8:

Исходные слагаемые находятся в R1 и R2, а результат будет в RH1:RH2. Отметим, что в старшем разряде (RH1) в результате может оказаться только либо 0, либо 1, т. к. сумма двух восьмиразрядных чисел не может превысить число 510 (255 + 255), именно потому флаг переноса С представляет собой один-единственный бит в регистре флагов. В этой процедуре команда brcc представляет собой операцию условного перехода на метку add_8 по условию, что флаг переноса равен нулю (BRanch if Carry Cleared). Таким образом, если флаг не равен нулю, выполнится операция увеличения значения регистра RH1 на единицу inc RH1, в противном случае она будет пропущена.

Внимательный читатель, несомненно, уже заметил ошибку в программе: а чему равно значение RH1 до выполнения нашей процедуры? Вдруг оно совсем не ноль, и тогда нельзя говорить о корректном результате. Поэтому правильней было бы дополнить нашу процедуру еще одним оператором, который расположить раньше всех остальных: cir RH1 (т. е. очистить RH1).

Заметим, что во всех случаях процедура разрастается во времени: было две команды, стало четыре, причем тут имеется еще и неявное замедление, поскольку все представленные арифметические команды выполняются за один такт, а команда ветвления brcc может занимать такт (если С = 1), а может и два (если С = 0). Итого мы выиграли один регистр, а потеряли два или три такта. И так всегда: есть процедуры, оптимизированные по времени, есть — по количеству команд, а могут быть и по количеству занимаемых регистров. Идеала, как и везде в жизни, тут не добиться, приходится идти на компромисс.

Если вы посмотрите таблицу команд в Приложении 4, то можете обратить внимание, что из восьмибитовых арифметических операций с константой доступно только вычитание (SUBI, SUCI), напрашивающейся операции сложения с константой нет. Это не упущение автора при формировании выборочной таблицы, а действительная особенность системы команд AVR. Это можно обойти при желании вычитанием отрицательного числа, но на практике не очень-то требуется, потому что разработчики семейства AVR решили облегчить жизнь пользователям, добавив в перечень арифметических команд две очень удобные команды