Но искать и найти полезное ископаемое не так легко, и надо быть очень внимательным и вдумчивым минералогом, чтобы принести пользу в этом деле. Хороший поисковый работник должен прежде всего разобраться в геологии и минералогии местности. Тогда он сможет сказать, чего можно ожидать в этом крае и на какие полезные ископаемые вещества надо обратить внимание. В моей практике поисков я убедился, что хорошо ищет только тот, кто знает, что он ищет, кто знает, что должно быть найдено, и тогда он непременно найдет. Я вспоминаю — в детстве, когда мы искали грибы, всегда достаточно было найти первый белый гриб, чтобы со всех сторон из леса послышались голоса: «И у меня, и у меня».
Молодой минералог только тогда найдет полезное ископаемое, когда он, заранее изучив край (хотя бы по книгам), знает, на что ему надо обратить внимание и заострить свой глаз.
Но вот найдено «полезное ископаемое»: сине-зеленые потеки на скале говорят нам о присутствии меди, а отколотый молотком свежий кусок породы сразу обнаруживает золотистые блестки медного колчедана.
Но много ли этой медной руды здесь, — может быть, только отдельные кусочки для коллекции, а может быть, — здесь меди так много, что можно заложить целый рудник?
Начинается вторая очередь исследований — разведка. Приходят минералоги, геологи, геохимики, бурильщики и только что открытое месторождение начинают разведывать. Геолог составляет общую геологическую карту, чтобы знать, где какая порода; минералог изучает руду, смотрит, с какими породами она связана и где ее больше; геохимик собирает материал для анализов, берет, как говорят, «среднюю пробу» и пытается понять, как здесь образовалась медь, откуда она пришла, где следует искать ее запасы.
В это время разведчики проводят канавы, снимают верхний покров земли, очищают твердый камень, царапают бороздки. Там, где наносов много, они роют шурфы (ямы), твердые камни разбуривают бурами, закладывают в отверстия патроны с взрывчатым веществом, соединенные с длинным шнуром и, поджигая шнур, производят взрыв — «отпаливают» породу. Мало-помалу расчищается месторождение, маленькие блестки вытягиваются в целую жилку, по ней идут разведчики дальше, проникая всё глубже, изучая ее строение, ширину и изменения по мере углубления.
Потом начинается борьба с водою, которая заливает шурфы и шахты, ставятся водоотливы, насосы, привозят двигатели, паровичок. К месторождению прокладывают дорогу, вырубают лес, простые землянки сменяют рублеными домами. Вырастают кузница, конюшня, склады, гаражи. На месторождении уже готовятся вышки для буровых скважин. Сильные моторы заставляют врезаться в скалу коронку с алмазом, победитом или стальною дробью. Коронка врезается всё глубже и глубже, л внутри длинной трубы из глубин поднимаются вырезанные цилиндры пород — керны.
Мало-помалу маленькие находки превращаются в настоящее «полезное ископаемое». Геохимик определил его состав и происхождение, геолог вычислил форму и запасы, экономист подсчитал и то и другое вместе, — и после долгих полевых и лабораторных исследований решение готово:
«Месторождение меди достаточно большое, запасы на пятьсот-восемьсот тысяч тонн руды, содержание меди в руде удовлетворительное (1,5 процента меди), месторождение можно эксплуатировать дешевыми открытыми работами, железная дорога недалеко, вокруг много леса, воды».
Так кратко звучит заключение, и через годы маленький сверкающий кристаллик халькопирита под сине-зеленым потеком дает начало хорошему медному руднику.
Но не думайте, что всегда так кончается каждое открытие; гораздо чаще разведка приводит к отрицательным результатам: руды оказалось очень мало, жилка быстро выклинивается книзу — и пропадает.
Не огорчайтесь такими результатами; они неизбежны, они учат отличать маленькие находки от целого месторождения, они заставляют с большею энергиею искать и копать в другом месте.
Разведка — трудное, но интересное и полезное дело. Иди по этому пути, и если ты хороший и вдумчивый минералог, то принесешь огромную пользу стране и откроешь, после ряда неудач и разочарований, новые месторождения полезных ископаемых для нашей промышленности.
«Молодые хозяева Союза Советов, вы обязаны знать природные сокровища страны своей, рассеянные на поверхности огромной земли и скрытые в недрах ее», — так говорил молодежи Максим Горький.
В лаборатории минералога
Наша последняя совместная прогулка. Читатель уже достаточно устал от новизны впечатлений, новых слов, названий и стран.
Еще одно последнее усилие, чтобы проникнуть в самые тайники, где создается наука минералогия.
Мы в Москве, в здании геологического и минералогического института Академии наук, в том научном учреждении, где по путям, проложенным гениальным холмогорским крестьянином М. Ломоносовым, изучается камень точнейшими методами физики, химии и математики. Здесь его надо изучать самыми точными методами, измерять расстояния, которые в миллион раз меньше одного миллиметра, взвешивать такие количества, что нужно их взять миллион миллионов раз, чтобы получить один грамм.
Сначала пойдем в кристаллографический институт; здесь природные кристаллы измеряют на больших гониометрах, с точностью до секунд дуги — методы астрономии позволили применить ее законы к кристаллам. Через лупу, освещаемую лампочками, кристаллограф отсчитывает углы кристаллика величиной с булавочную головку, который, однако, покрыт сорока-пятьюдесятью мельчайшими блестящими площадками. Потом кристаллограф исследует свои кристаллы рентгеновскими лучами: в одной комнате получается ток в десятки тысяч вольт, по особым изолированным проводам проходит он в другую комнату, где через окно, как на рубке парохода, управляет процессом молодой исследователь. В рентгеновских лучах раскрывается внутреннее строение кристалла, и ряд пятен или колец на фотографической пластинке позволяет ученому разгадать с помощью сложных математических вычислений те ряды атомов, из которых построен кристалл.
Дальше в отдельной комнате, где искусственно поддерживается постоянная температура, особые ртутные регуляторы выравнивают температуру растворов в специальных сосудах, а сквозь стенки стеклянных банок виднеются огромные прозрачные кристаллы, искусственно выращенные в этих тепличках.
Пойдем в лаборатории института геологических наук. Здесь в минералогической лаборатории приготовляют тончайшие пластинки — толщиною в сотые доли миллиметра — шлифы. В особых микроскопах через шлифы пропускаются лучи то солнечного света, то отраженные лучи электрических ламп. Здесь изучается целый мир явлений светового луча, для которого незаметны ряды решеток; работа минералога должна быть особо тщательной, чтобы получить в своих вычислениях точность, которая выражается какою-то ничтожною дробью, миллиардными долями сантиметра. За эту точность он борется долгое время, и иногда после месяцев упорного труда ему удается добиться желанных результатов.
Зачем, спросите вы, ломать голову, портить глаза и тратить время из-за какой-то миллиардной доли сантиметра?
Как часто слышу я эти вопросы, и как много в них роковых заблуждений и вредных мыслей!
Величайшие законы мира открываются за последние годы именно в этих бесконечно малых величинах, миллионных и миллиардных долях сантиметра. Их отклонения от теоретических величин говорят нам о скорости движения небесных тел, о строении мельчайшего ядра атомов, о законах строения вещества, о притягивании световых лучей большими телами, о давлении света на мелкие частицы, о физическом сочетании времени и пространства, о тончайших ферментах жизни живого вещества и т. д. В величайшей точности наших приборов и наблюдений, в упорной борьбе за каждый новый десятичный знак лежит разгадка мира и великих сил, заложенных внутри атома. И управлять силами мира будет тот, кто первый постигнет эти цифры — где-то на двадцатом или тридцатом месте после нуля и запятой:
0,000000…5.
И мне хочется сказать нашим молодым исследователям: не спеши, будь точным и цени точно наблюденные и точно измеренные явления природы. Из этих кабинетов, где определяются удельный вес минерала, прохождение через него лучей света, его электрические и магнитные свойства, его форма, цвет, твердость, строение, пройдем дальше, в лаборатории геохимии. Если в минералогической мы боролись за точность измерения расстояний, то здесь ведется борьба за точность взвешивания, за точность веса. Мы входим в темные тихие комнаты специальных лабораторий: спектроскопической и рентгеновской. Большие приборы с трубками и трубами; слева пропускаются искры то ярких вспышек электрической дуги, то тихие разряды десятков тысяч вольт рентгеновского излучения. Здесь определяются ничтожные следы различных веществ — элементов — в наших минералах: взвешивают миллионные доли грамма, которые недоступны самым точным химическим весам, или открывают в минерале иногда двадцать-тридцать разных элементов, атомы которых запрятались в свободных промежутках кристаллической решетки. И хотя их очень мало, мы заставляем их хоть на миг сверкнуть спектральною линиею и этим обнаружить себя.
Из этих темных помещений перейдем в светлые, залитые солнцем химические лаборатории. Здесь — господство геохимика и минералога, здесь разгадывается прошлое минерала и намечается будущее в сложных процессах заводской деятельности. Здесь минерал разлагается на свои составные части, — то его сплавляют в платиновом или серебряном тигле в особых электрических печах, то кипятят в стеклянных или кварцевых стаканах с разными кислотами, то в больших платиновых чашках разлагают электрическим током, то в особых лодочках вставляют в длинные кварцевые трубки и нагревают до светло-красного каления. Длинный путь проходит минерал в химической лаборатории, и после каждого взвешивания на весах геохимик записывает: кремнезема столько-то, магния столько-то, фтора столько-то. Как трудны эти анализы, когда в минерале сплетено до тридцати различных элементов, как трудно отделить их друг от друга, и нередко проходит много недель, пока геохимик разгадает тайну минерала.