Физики-теоретики после долгих раздумий подписались бы под этим сообщением. Химикам же нужно было «пощупать», прометий своими руками, посмотреть хотя бы на крохотную крупинку нового металла или, на худой конец, его соединения.
Впрочем, вряд ли удалось бы выделить из смеси осколков деления урана более десятых, а то и сотых долей грамма элемента номер 61.
Разве это беда? Ведь к тому времени химикам уже не раз приходилось оперировать с еще меньшими количествами веществ. И довольно успешно.
Вся сложность состоит в другом. Прометий — элемент редкоземельный. О сходстве членов этого семейства мы говорили. А в мешанине ядерных осколков довольно много и ближайших соседей прометия — неодима и самария.
От них-то в первую очередь и надо прометий отделить. Но ох как это не просто! Те химики, которые свою жизнь целиком посвятили редким землям, совершили научный подвиг. Мука — другого слова здесь и не придумаешь — разлучать четырнадцать близнецов, чтобы заполучить каждого по отдельности.
(Француз Ш. Урбэн задумал однажды приготовить чистый тулий. Он добился своего. Но потратил пять лет и провел более пятнадцати тысяч крайне однообразных и утомительных химических операций.)
Выделить чистый прометий, конечно, легче, но ненамного. Учтите, что он радиоактивен и распадается быстро. Не получится ли так, что в конце процессов разделения от него ничего не останется?
Значит, нужны более быстрые методы. Чтобы разделение лантаноидов проводить не за годы, не за месяцы, не за недели даже, а в считанные часы. Таких методов не было на вооружении у химии.
Вот тогда-то и вспомнили о хроматографии.
…Разделительную трубку Цвета (теперь ее называют солиднее: хроматографическая колонка) заполняют адсорбентом (не мелом, как бывало, а специальными ионообменными смолами). Через смолу пропускают раствор солей редкоземельных элементов. Хоть и очень похожи лантаноиды, но ведь не одинаковы же они. Каждый образует со смолой комплексное соединение.
Это соединение различной прочности. В таком различии есть свой порядок. Первый в семействе — лантан связывается со смолой крепче всего; последний — лютеций, наоборот, наиболее слабо.
Дальше смолу промывают специальным раствором. Капли раствора обволакивают зерна смолы и как бы смывают прикрепившиеся ионы редкоземельных элементов. Опять же в строгой последовательности.
И капают из колонки растворы чистых редкоземельных солей: в первую очередь — соли лютеция, в самом конце — лантана.
Именно таким путем отделили прометий от неодима и самария американские ученые Д. Маринский, Д. Гленденин и Ч. Кориэлл. И затратили на весь процесс несколько часов.
…Полянка в сосновом бору. Жаркий июльский день. И земляника, земляника под ногами — спелые, шероховатые, ярко-красные ягоды. Изумительно вкусные, они прямо тают во рту.
А чем она пахнет, земляника? Признайтесь, вы никогда об этом не задумывались. Вы лишь с наслаждением вдыхали ароматы соснового леса, запахи нагретой солнцем поляны.
Но оказывается, запах — сложнейшая штука. Есть целая наука о запахах. Ученые до сих пор не пришли к единой точке зрения: почему одни вещества обладают сильнейшим запахом, а другие не пахнут вовсе. Почему одни запахи приятны, а другие отвратительны.
Несомненно, запах вещества связан со строением его молекул. Но как именно? Вот этого-то еще до конца и не знают. Строгой физической теории запахов пока нет.
Химикам немного легче. Они в силах опознать различные молекулы, «ответственные» за те или иные запахи. И химики, например, сумеют сказать вам, чем пахнет земляника.
Аромат земляники — это сложнейшая смесь девяноста шести самых разнообразных запахов. Любой, даже самый опытный парфюмер позавидовал бы природе, создавшей великолепные «земляничные» духи.
Как же удалось разобраться в составе «земляничных» духов?
С помощью метода газо-жидкостной хроматографии.
Адсорбент в этом методе — специально приготовленная двуокись кремния SiO2, смоченная нелетучей жидкостью. Движущая среда — благородный газ (например, аргон). Вот и все.
А можно просто стеклянную трубочку смочить нелетучей жидкостью. Только трубочка должна быть очень длинной. Чтобы «разнюхать» аромат свежей земляники, исследователи брали трубку длиной… в 120 метров.
Разумеется, ее пришлось свернуть в спираль. И поместить в специальный прибор — термостат. Он обеспечивал медленное и равномерное повышение температуры. Ведь различные составляющие земляничного запаха по-разному летучи: одни легче, другие труднее. Они и расположились в определенной последовательности по всей длине трубки. А выгоняли их оттуда, пропуская через трубку аргон. На выходе сложная аппаратура фиксировала прохождение различных веществ. В земляничном запахе их оказалось девяносто шесть…
Возможности газовой хроматографии необычайны. Она позволяет обнаруживать концентрации веществ порядка 10–12 грамма!
Многие сложнейшие природные вещества исследовали химики этим способом. Сколько, по-вашему, различных компонентов содержит нефть? Ни много ни мало — около двухсот тридцати! И их удалось не только сосчитать, но и установить, что каждый собой представляет.
Официальная версия гласит: Наполеон Бонапарт I скончался на острове Святой Елены 5 мая 1821 года. Причина смерти — рак желудка, болезнь, меньше чем за полгода упрятавшая в могилу бывшего властителя полумира. Медицинское заключение было подписано доктором Антомарки.
Версия эта утвердилась прочно, но все-таки… ей верили немногие. И были на то основания.
Многие приближенные великого императора до конца дней своих утверждали: Наполеон умер не своей смертью, он был отравлен.
Да и сам Бонапарт за неделю до кончины, диктуя текст завещания, сказал: «Меня убила английская олигархия и ее наемный убийца».
Но чем могли отравить Наполеона? Всяких ядов и в прошлом веке знали более чем достаточно. Но не всяким бы воспользовался неизвестный убийца, чтобы погубить императора.
Требовался яд безвкусный, чтобы жертва ничего не заподозрила. Не очень сильный, чтобы убивал постепенно, медленно накапливаясь в организме. Например, мышьяк.
Так появилась другая версия: Бонапарта отравили мышьяком.
Но как это доказать? Предположения предположениями, а тут необходимы несомненные подтверждения. Свидетелей не осталось. А извлекать прах из гробницы и исследовать его — такое показалось бы кощунством.
И тем не менее спустя 140 лет после печального события в шотландском городе Глазго началось необычное следствие по делу о насильственной смерти Наполеона. Вели дело два врача: Смит и Форшуфвуд.
Они начали с того, что обратились во многие музеи мира со странной просьбой. Дескать, нет ли в музейных коллекциях… пучка волос великого француза? Немало прошло времени, прежде чем следователям посчастливилось. Они получили несколько волосков, срезанных с головы Наполеона через несколько часов после его смерти.
Шотландские врачи знали: мышьяк, попав в человеческий организм, постепенно накапливается в волосах. Если он обнаружится в волосах Бонапарта, то…
Легко сказать — обнаружится. Ведь мышьяка-то в волосах слишком ничтожное количество. Можно, конечно, применить химические методы анализа, но они малочувствительны, не исключают возможных ошибок. А тут надо знать наверняка.
Тогда к следствию подключился шведский физик Вассен.
Драгоценные волоски, надежно упрятанные в алюминиевый цилиндрик, исследователь поместил на несколько часов в урановый реактор.
Когда волоски извлекли и провели соответствующие измерения, выяснилось: да, Наполеон погиб от мышьяка. Мышьяка в его волосах было в тринадцать раз больше обычного. Притом давали императору мышьяк постепенно, малыми дозами.
Каким же образом удалось ученым выяснить истинную причину смерти Бонапарта? Обнаружить мышьяк, не применяя никаких, абсолютно никаких химических методов?
Природный мышьяк — элемент чрезвычайно устойчивый. Во всяком случае, никто из ученых не наблюдал у него хотя бы исчезающе слабой радиоактивности.
Есть у мышьяка и еще одна особенность. Он, как говорят, элемент-одиночка. Многие другие представляют собой смесь двух, трех, а то и более изотопов. Как, скажем, олово, у которого насчитывается десять разновидностей атомов. И все они встречаются в природе.
Мышьяк же одинок. В его ядрах содержится 33 протона и 42 нейтрона, и такая комбинация очень прочна.
Но если в это ядро каким-нибудь способом добавить лишний нейтрон, от былой устойчивости не останется и следа. Образуется другой, радиоактивный изотоп мышьяка. И чтобы его обнаружить, химические методы вовсе не нужны. Достаточно применить специальные приборы, регистрирующие радиоактивные излучения. Чем больше активного мышьяка, тем интенсивнее эти излучения.
В этом и заключается принцип простого, но поистине великого метода — радиоактивационного анализа. Он позволяет определять совершенно ничтожные количества веществ, доли грамма, измеряемые числами, где после запятой стоит 10–12 нулей. Для этого нужно лишь облучить анализируемый объект потоком нейтронов и затем измерить интенсивность излучения, испускаемого образовавшимися радиоактивными изотопами.
Вот каким способом узнали историки обстоятельства смерти Наполеона Бонапарта. Не правда ли, великолепный пример помощи со стороны точных наук!
Для современных аналитиков радиоактивационный анализ — всевидящий глаз. Он легко видит то, чего не в силах разглядеть почти все другие аналитические методы.
Все знают, что чистый германий — великолепнейший полупроводник. Но представьте, что в нем случайно оказалась примесь атомов другого элемента, скажем сурьмы. Примесь не ахти какая: на тысячу миллиардов атомов германия… один-единственный атом сурьмы. И это ничтожнейшее количество сводит на нет полупроводниковые свойства германия.