Занимательно о космологии — страница 24 из 56

Высказывая свою гипотезу о строении Галактики, Вильям Гершель не покушался на вселенную Ньютона. Нет, его галактика-линза или галактика-жернов просто одиноко висела в бесконечном пространстве, включая в себя все существующие звезды, планеты, кометы и туманные пятна. Впрочем, с последними дело обстояло сложнее. Шарль Мессье, французский «ловец комет», по ошибке приняв туманности за любезные его сердцу кометы, занес 103 туманных пятна в свой каталог 1771 года. Гершель довел их число до 2500. В 1786 году он писал: «Я видел двойные и тройные туманности в разнообразнейших положениях; большие с малыми, напоминавшими спутников; узкие и очень длинные, светлые туманности или блестящие брызги; имели форму веера или электрической кисти, исходящей из светлой точки; другие напоминали кометы с ядрами в центре; попадались звезды, окруженные туманной оболочкой; встречались и туманности млечного характера, вроде удивительного и непонятного образования около Θ-Ориона; наконец, я видал туманные пятна, неоднородно светящиеся, что указывало, по-видимому, на их разрешимость в звезды».

Гершель обнаружил, что некоторые объекты, казавшиеся Мессье туманностями, в его громадных телескопах разрешались в звездные кучи или скопления. Это обстоятельство смущало наблюдателя, заставляло задумываться над тем, не зависит ли различие между туманностями и звездными скоплениями лишь от разрешающей силы телескопа.

Безмерно загруженный работой, Гершель не знал, что эта оригинальная мысль была высказана полвека назад в качестве умозрительной гипотезы Кантом. Впрочем, может быть, и хорошо, что он не знал этого. Отдав дань идее «островных вселенных», Гершель как-то в разговоре похвастался, что открыл полторы тысячи новых вселенных. Но затем английский астроном останавливается на иной точке зрения, считая туманности, не разрешаемые в звезды, «светящейся жидкостью, природа которой нам совершенно неизвестна».

Но и это мнение тоже не было окончательным. Одно время он думал, что различные виды звездных скоплений и туманностей являются одними и теми же объектами, только находящимися в разной стадии своего развития. В 1789 году Гершель писал: «Оно (небо) мне теперь представляется великолепным садом, в котором находится масса разнообразнейших растений, посаженных в различные грядки и находящихся в различных степенях развития… Я вас спрошу, не все ли равно, будем ли мы последовательно присутствовать при зарождении, цветении, одевании листвой, оплодотворении, увядании и, наконец, полной гибели растения или же одновременно будем созерцать массу образчиков, взятых из различных степеней развития, через которые растение проходит в течение своей жизни».

В 1811 и 1814 годах он опубликовал даже собственную теорию процесса постепенного уплотнения светящейся жидкости, образующей туманность, в звездное скопление, потом в туманную звезду и, наконец, в звезду обычную или группу таких звезд.

В конце жизни Гершель весьма радикально изменил свою точку зрения даже на строение вселенной и порядок распределения в ней звезд. Он снова вернулся к идее если не открыто бесконечной вселенной, то, во всяком случае, к идее мира, состоящего из множества звездных систем наподобие Галактики.

На примере жизни Гершеля читатель легко убедится, что точка зрения человека не есть что-то застывшее, закостеневшее, данное человеку раз и навсегда свыше. Отнюдь! Точка зрения эволюционирует вместе с человеком, она может измениться, став даже противоположной. Одному не вправе изменять человек, если, конечно, заинтересован он до конца дней своих сохранить уважение к самому себе, — служению истине.


Глава пятая


в которой у идеи бесконечной вселенной Ньютона начинаются первые неприятности, повергающие ее в нокдаун

Итак, вселенная все-таки бесконечна! Это утверждение в XVIII столетии ни для кого не казалось сенсационным. Ведь принцип сей был провозглашен еще древними греками. Певец изменчивости, избравший своим девизом «Все течет», Гераклит был убежден в том, что вселенная бесконечна во времени.

«Смеющийся философ» Демокрит считал вселенную бесконечной в пространстве.

Христианские проповедники ограничили пространство мира хрустальной сферой неподвижных звезд, отпустив ему конечное время от сотворения и до страшного суда. Но за границами хрустальной сферы начинался мир божий, о котором не говорили, но который втайне представлялся не имеющим ни конца ни края.

Доминиканский монах Джордано Бруно заявил, что никакой разницы между мирами нет и что вселенная бесконечна в пространстве и вечна во времени.

С тех пор концепции конечности и бесконечности нашего мира с завидной методичностью сменяли друг друга.

«Бесконечность» — неприятное слово, неприятное понятие. Попробуйте представить себе бесконечное пространство без конца и края, без дна и покрышки…

Опыт здравого смысла подсказывает нам, что пространство — это место, которое может занять некая вещь. Так учили и философы древности. Вселенная — это всеобщее пространство, вместилище всех вещей.

Но даже если убедить себя, что количество «всех вещей» бесчисленно, то и тогда представить себе бесконечное пространство наглядно невозможно. Сама мысль о бесконечности нестерпима для человечества. Она заводит в умственный тупик.

И вот в 1744 году дотошный швейцарский астроном Жан Филлип Шезо высказывает первое сомнение в правильности ньютоновской концепции о бесконечности вселенной. Только сомнение, не больше. Прошло всего лишь семнадцать лет после смерти великого физика, и слава его ослепляла. И все-таки…

«Если количество звезд во вселенной бесконечно, — размышляет Шезо, — то почему все небо не сверкает как поверхность единой звезды? Почему небо темное? Почему звезды разделены черными промежутками?» Скромный астроном сам пугается своей смелости. Ведь это значит сомневаться в утверждениях самого Ньютона?.. И Шезо тут же ищет достойные возражения самому себе: «Скорее всего это пылевые облака заслоняют от нас свет дальних звезд. Земным наблюдателям доступны лишь лучи самых близких светил…»

Голос швейцарца звучит неуверенно, почти робко, и на целых восемьдесят два года его возражения тонут, заглушаются грохотом барабанов славы несравненного Ньютона.


Первая атака на вселенную Ньютона — парадокс Ольберса

Генрих Вильгельм Матеус Ольберс (1758–1840) был врачом, хорошим практикующим врачом с пациентами из весьма добропорядочных семейств города Бремена. Почтенный человек — доктор Ольберс, ничего не скажешь, но… Генрих Ольберс пользовался бы еще большим уважением среди бременских бюргеров, занимайся он одной медициной.

Ко всеобщему сожалению, у доктора Ольберса была обсерватория. Да, да, частная обсерватория, в которой он производил самые различные наблюдения над небесными светилами. А что в этом хорошего? Что хорошего, если врач, вместо того чтобы ночью спокойно спать, сидит как чародей, уставившись длинной трубой в звездное небо. Нехорошо!

Такое поведение обывателя настораживает. Он, обыватель, не любит, когда кто-то слишком сильно отличается от него то ли мыслями своими, то ли поведением. Даже если это врач. Даже если это хороший врач! Впрочем, у герра Ольберса существовало одно смягчающее вину обстоятельство. Он был богат. И потому Генрих Вильгельм Матеус Ольберс мог позволить себе игнорировать вкусы пациентов, не гнаться за расширением практики, а больше времени отдавать звездам. Таково было его хобби, как сказали бы мы с вами, уважаемый читатель, сегодня.

Между прочим, герр Ольберс был довольно известным лицом в астрономическом мире. Славу ему принесли открытия двух малых планет, Паллады и Весты, и объемистый труд, посвященный способу вычисления кометных орбит. Его положение позволяло ему покровительствовать молодым начинающим наблюдателям и однажды даже помочь неизвестному в те годы математику Фридриху Бесселю вступить в гильдию астрономов. Ольберс дал высокую оценку работе молодого математика, посвященной обработке наблюдений кометы Галлея. В дальнейшем Бессель стал знаменит, и Ольберс до конца жизни гордился добрым делом, которое ему удалось совершить.

Терпеливый читатель вправе возмутиться. Ведь наша тема — космология, наша тема — вселенная. В заголовке автор обещал «атаку» на устоявшиеся и проверенные наблюдениями взгляды самого Ньютона. Где же все это? Напомним, что к тому времени понятие о вселенной основывалось на трех постулатах.

I. Вселенная безгранична и неизменна во времени.

II. Число звезд, равномерно распределенных в однородном пространстве, подчиняющемся геометрии Эвклида, бесконечно.

III. Все звезды в среднем имеют одинаковую светимость. Потому яркие светила можно считать расположенными ближе, слабые — дальше.

Три принципа давали бесконечную и однородную в пространстве, неизменную во времени космологическую модель вселенной. Пространство ее, безусловно, обладало всеми свойствами трехмерного геометрического пространства Эвклида, то есть длиной, высотой и шириной, и абсолютно не зависело от содержащейся в ней материи.

Такую модель автор с легким сердцем, пользуясь терминологией академика Гинзбурга, будет называть в дальнейшем СОЕ-моделью, то есть стационарной, однородной и эвклидовой.

Примерно в году 1826-м вселенная представлялась Ольберсу в виде гигантского кочана капусты с бесконечным количеством слоев — листьев. На каждом слое — звезды. Основываясь на этой мысленной модели, Ольберс решил попытаться подсчитать распределение звезд. Если принимать во внимание все три постулированных свойства ньютоновской вселенной, о которых мы говорили выше, то поверхность каждого последующего «капустного листа» — слоя, радиус которого в два раза больше радиуса предыдущего, увеличивается в квадрате, то есть в четыре раза. И при условии равномерного распределения звезд содержит в четыре раза больше светил, чем предыдущий слой. Сила света любой звезды обратно пропорциональна тоже квадрату расстояния. То есть свет звезд, находящихся в два раза дальше, кажется ослабленным в четыре раза. Ну, а если звезд будет в четыре раза больше?..