Занимательно о космологии — страница 52 из 56

Была, конечно, маленькая загвоздка и в этом объяснении. Почему же все-таки вселенная расширяется? На этот вопрос попытались подробно ответить совместно с Р. Литтлтон и Г. Бонди в 1959 году, выдвинув модель «Электрической вселенной». Оба специалиста высказались за то, что расширение вселенной можно объяснить электрическим отталкиванием. Для этого достаточно было предположить совершенно ничтожное неравенство положительного и отрицательного зарядов.

Литтлтон был даже уверен, что в лабораторных условиях проверить эту гипотезу окажется нетрудно. В 1961–1963 годах В. Хьюз с сотрудниками сумел доказать, что величина неравенства зарядов не наблюдается и при точности измерений на два порядка выше предсказанной (то есть ). После этого гипотеза электрического отталкивания потеряла в глазах исследователей всякую привлекательность; да и сами авторы как будто настроены к ней сейчас весьма скептически.

Что ж, время идет. Наука развивается. Постепенно стали возникать и некоторые теоретические неувязки. Например, математическим эквивалентом вселенной Бонди — Голда и Хойла является пустая математическая модель де Ситтера, о которой мы уже говорили. Для модели де Ситтера закон Хаббла — точный закон, для любых расстояний. Наблюдения же этого не подтверждают…

Хотя гипотеза стационарной вселенной и пользовалась популярностью, многие советские и зарубежные физики и астрономы отказывались ее принять. Однако такие вопросы не решаются голосованием и даже авторитетными теоретическими рассуждениями. Так, например, когда в сентябре 1952 года Вальтер Бааде выступил в Риме на конгрессе Международного астрономического союза с заявлением о необходимости пересмотреть шкалу внегалактических расстояний и увеличить возраст вселенной, то это уже само по себе снижало необходимость и злободневность гипотезы стационарной вселенной. Однако для открытой и безоговорочной критики время еще тогда не пришло. Прерогатива произнесения приговора над любой теорией принадлежит эксперименту.

Правда, нашелся в том же году один откровенный противник теории Бонди — Голда и Хойла… папа римский. Да, да, все тот же неугомонный Пий XII заявил с высоты апостольского престола, что теория стационарной вселенной не годится, ибо не соответствует божественному откровению. Согласно библии ведь мир «был сотворен»! В этом отношении «большой взрыв» папу устраивал куда больше. Но, кажется, возражения католического пастыря особенно никого не взволновали. Гораздо важнее было решить вопрос с экспериментом.

Мог ли помочь опыт подтвердить или отвергнуть справедливость стационарной космологии? Да, мог! В модели Хойла, Бонди и Голда средняя плотность вещества неизменна во времени. В расширяющихся же моделях в прошлом плотность должна была быть значительно выше, чем сейчас.

В модели стационарной вселенной мир, отделенный от настоящего времени миллиардами лет, ничем не отличался от современного. Релятивистская космология предусматривала определенную эволюцию вселенной во времени.

Какой же провести эксперимент? Измерить точно среднюю плотность вещества во вселенной — такую задачу решить сегодняшней науке не под силу. Сосчитать, как меняется количество галактик с увеличением расстояния, — дело тоже пока безнадежное, потому что очень уж трудно с достаточной точностью измерять расстояние до самых удаленных звездных островов. Если бы все галактики были одинаковы, а то ведь свойства их чрезвычайно различны. Различны и яркости, являющиеся одним из главных критериев расстояния.

И вот наступил 1963 год; год, когда, как пишет Дж. Гринстейн, «астрономы обнаружили, что пять небесных объектов, которые считались слабыми звездами нашей Галактики, хотя и несколько необычными, на самом деле являются, быть может, самыми удивительными и загадочными объектами, когда-либо наблюдавшимися человеком». В 1963 году были открыты квазары!

Конечно, сам факт этого открытия еще ни о чем не говорил, хотя именно эти удивительные объекты звездного мира погубили теорию стационарной вселенной. Как вы помните, все они обладают значительными красными смещениями. То есть этих «монстров звездного мира» мы видим сейчас такими, какими они, а следовательно, и вселенная, были 3, 5, 7 и даже 9 миллиардов лет назад. В пространственно-временной дали старой вселенной странных объектов множество. В непосредственной же близи к нам, ну хоть до миллиарда световых лет, их нет ни одного.

Итак, наблюдения последних лет: открытие квазаров и особенно «реликтового излучения» — окончательно доконали гипотезу стационарной вселенной Бонди и Голда. Существует мнение, что если бы «реликтовое излучение» было открыто на двадцать лет раньше, подобная гипотеза даже не возникла бы. На сегодняшнем уровне знания можно считать доказанной гипотезу о расширении, об эволюции вселенной во времени.

Понимали это и авторы, и защитники гипотезы стационарной вселенной. Сам Ф. Хойл, — заканчивая на лекциях раздел, посвященный квазарам, вынужден был признать: «Возможно, что мы наконец-то получили ключ к связи между космологией и астрономией. Квазары выглядят так, как согласно некоторым космологическим теориям выглядела наша вселенная при ее возникновении. Последние десять лет (1955–1965) существовали так называемая теория „большого взрыва“, согласно которой вся вселенная произошла одновременно, и „теория стационарной вселенной“, по которой образование нуклонов спокойно происходит все время. Возможно, истина лежит где-то посередине. Возможно, наличие квазаров свидетельствует, что во вселенной вместо одного большого взрыва происходит множество маленьких. Тем не менее эти маленькие взрывы гораздо мощнее, чем спокойные процессы теории стационарной вселенной».

Этими словами автор гипотезы стационарной вселенной отказался от своего детища. Что же, на это надо иметь немало мужества. Чаще люди бывают не в силах, обнаружив свое заблуждение, признать ошибки. Сегодня разбегание галактик и квазаров можно считать, пожалуй, доказанным. Можно признать и то, что модель расширяющейся вселенной наиболее точно соответствует уровню современных знаний. А вот гипотеза стационарной вселенной оказалась безумной явно недостаточно.


Каббалистика XX века

Когда-то очень давно, может быть в самом начале нашей эры, кроме трех наиважнейших «наук»: магии, астрологии и алхимии, — весьма большим почетом пользовалась мистическая религиозная философия, изложенная в еврейских каббалистических сочинениях. Последователи каббалы, что на древнееврейском означало просто «предание», занимались символическим толкованием священных текстов, придавая словам и числам особое мистическое значение.

Но позвольте, скажет возмущенный читатель, при чем тут какие-то престарелые каббалисты, когда разговор идет о XX столетии?..

А вот при чем. Откройте-ка второй том физического энциклопедического словаря на странице 496. В статье «Космология», принадлежащей перу A. Л. Зельманова, в разделе «Основные затруднения, сыгравшие явную или неявную роль в появлении новых теорий…» под номером 2 стоит: «…2. Необъясненная эмпирическая связь межгалактических параметров с микрофизическими константами».

Что это значит?

В тридцатые годы Артур Эддингтон, весь переполненный идеями относительности, в целях популяризации задумал сосчитать… количество элементарных частиц во вселенной.

— Что за задача? — удивились многочисленные философы от физики и физики от философии. — Как можно счесть бесконечное в необъятном?..

Однако согласно теории относительности можно было представить вселенную замкнутой и вычислить ее диаметр и объем. Диаметр оказался равным примерно 1028 сантиметров, а объем приблизительно 1084 кубических сантиметров. Среднюю плотность вещества Эддингтон тоже знал; по оценкам того времени она равнялась примерно 10-28 г/см3. Если теперь помножить объем на плотность, получится масса вещества вселенной что-то порядка 1056 грамма. Масса же одного нуклона составляет примерно 10-24 грамма. Тогда количество частиц во вселенной найдется простым делением 1056 : 10-24 = 1080. Это огромное число.



Но почему оно так поразило Артура Стэнли Эддингтона, что в своей работе «Фундаментальная теория» он отводит едва ли не центральное место математическому манипулированию с большими безразмерными коэффициентами — мировыми постоянными?

Отойдем еще чуть-чуть назад во времени, примерно в двадцатые годы. В Бристольском университете решает проблему получения высшего технического образования долговязый студент по имени Поль Дирак. Пройдет совсем немного лет, и весь мир узнает его полное имя Поль Адриен Морис Дирак. Хотя это вовсе и не принято в Англии. Пока же он Поль, или Пол, — парень со складом ума, малопригодным для инженерной деятельности.

Однажды товарищи по курсу показали ему конкурсную задачу, которую дали в Кембридже на какой-то ежегодной студенческой конференции или олимпиаде. Условия звучали так: «Трое рыбаков поехали ловить рыбу. Ненастная ночь заставила их укрыться в одинокой пустой хижине. Чтобы переждать непогоду, рыбаки уснули. Однако одному из них не спалось. Выглянув на улицу и убедившись, что буря утихает, он решил забрать свою долю улова и отправиться домой, не беспокоя товарищей. При дележке одна рыба оставалась лишней. И дабы никому не было обидно, первый рыбак выкинул ее в море.

Вскоре после его ухода проснулся второй рыбак. Не зная, что дележ уже состоялся, он заново разложил улов на три части, получил лишнюю рыбу, выкинул ее в море, забрал свою долю и уехал домой.

С третьим рыбаком вся история повторилась. И он делил улов на три части, кидая лишнюю рыбу в море, брал свою долю и отправлялся восвояси.

Спрашивалось, какое минимальное число рыб удовлетворяло этому условию?»

Впервые кембриджскую задачу автор услыхал, будучи также студентом на семинаре по физике от прекрасного преподавателя доцента С. Б. Врасского. И насколько помнится, довольно долгое время был занят вместе с товарищами ее решением. Однако сообщенный С. Б. Врасским ответ Дирака ошеломил нас всех.