Занимательный космос. Межпланетные путешествия — страница 21 из 37

• о деятельности ракетных секций Осоавиахима в Москве (доклад И. Меркулова) ив Ленинграде (докладинженера А.Н. Штерна).

Конференция постановила строить в 1935 г. крылатую ракету-лабораторию для полетов человека на небольших высотах, а также стратосферную ракету для научных исследований.

В системе Осоавиахима, как и в АвиаВНИТО, существует Стратосферный комитет, изучающий проблему овладения стратосферой, в частности, с помощью ракетных аппаратов. По поручению Стратосферного комитета АвиаВНИТО инженером JT.K. Корнеевым разработаны проекты двух стратосферных ракет, рассчитанных на жидкое горючее.

Прибавим к сказанному, что – как докладывалось на Всесоюзной конференции по изучению стратосферы в Ленинграде – в 1933—34 гг. в Москве была сооружена и испытана в полете до высоты 10 км жидкостная ракета (рис. 47 и 48).

Рис. 47. Жидкостная ракета советского изобретателя М.К. Тихонравова

Рис. 48. Пуск жидкостной ракеты инженера Тихонравова

Рис. 49. Проектируемая ракета инженера Л. К. Корнеева

Зондирование стратосферы ракетными аппаратами, несущими метеорологические самописцы, будет иметь огромное значение, так как никакими другими средствами невозможно достигнуть подобных высот. Стратостат ни при каком устройстве не сможет никогда подняться выше 40 км; рекордный подъем употребляемых теперь шаров-зондов – 36 км; радиозонды достигали несколько меньшей высоты.

Рис. 50. Ракетная катастрофа. Взрыв ракеты пражского изобретателя Л. Оченазека

Даже из приведенных в этой главе, далеко не исчерпывающих сведений ясно, какими быстрыми темпами развивается на наших глазах ракетная техника. Я особенно живо ощущаю эту разительную перемену, когда перелистываю первое издание настоящей книги. Высказанная на его страницах в 1915 г. уверенность в неизбежном покорении мирового пространства ничем не могла быть тогда подкреплена, кроме чисто теоретических доводов. Теперь же, спустя всего двадцать лет, мы располагаем достаточными основаниями для глубокого убеждения, что дни великих триумфов ракетной техники уже недалеки.

Глава 18. Два несбыточных проекта

Мы могли бы и не рассматривать несбыточных проектов межпланетных перелетов. Но задача наша состоит не только в том, чтобы познакомить читателя с реально достижимым в этой области: мы желали бы также рассеять и некоторые относящиеся сюда заблуждения. Не имеет никакого смысла перечислять и рассматривать все многочисленные «проекты» межпланетных перелетов, придуманные авторами фантастических произведений, так как сами авторы не придавали серьезного значения своим часто совершенно бессмысленным выдумкам. В первых главах нашей книги мы разобрали наиболее поучительные или внешне правдоподобные идеи подобного рода: «кеворит» Уэллса, пушку Жюля Верна, давление световых лучей и некоторые другие, отбрасывая все прочие как не заслуживающие никакого внимания и лишь засоряющие поле обсуждения.

Имеется, однако, еще два проекта, которые полезно рассмотреть, несмотря на их безусловную несостоятельность. Они получили у нас некоторую известность, так как неоднократно описывались в журналах, и представляются, на первый взгляд, легко осуществимыми. К сожалению, журналы не сопровождали их описание критическим разбором, и у многих читателей могло остаться убеждение, что мы имеем здесь хорошо продуманную техническую идею.

Оба проекта исходят из Франции. Первый из них предложен был в 1913 г. двумя французскими инженерами Масом и Друэ (Mas и Drouet) и описан известным техническим писателем Графиньи следующим образом:

Рис. 51. Проект отсылки межпланетного вагона (А) вращением огромного колеса

«Представьте себе колесо огромного диаметра, несущее на окружности снаряд, который должен быть отброшен вдаль (рис. 51). Если при достаточной скорости вращения внезапно освободить снаряд, он полетит по касательной с той же скоростью, с какой двигалась соответствующая точка колеса. Устройство может быть упрощено: машина может состоять из двух параллельных брусьев, закрепленных посередине на оси. Противоположные концы брусьев могут быть снабжены с одной стороны метательным снарядом, с другой – противовесом равной массы. При длине брусьев в 100 м каждый оборот дает путь в 314 м; значит, если довести скорость вращения до 44 оборотов в секунду, то крайние точки будут двигаться с секундною скоростью около 14 км».

«Если пожелаем развить такую скорость в течение нескольких минут, понадобится двигатель мощностью в миллион лошадиных сил. Это, очевидно, неприемлемо. Оставаясь в пределах существующих технических норм, придется действовать более медленно и ассигновать примерно 7 часов, чтобы добиться 44 оборотов в секунду; тогда достаточен будет двигатель в 12 000 л. с.».

«Метательная машина, действующая так, как было объяснено, должна быть расположена где-нибудь над расщелиной, например, между скалами в горах. Она будет приводиться в движение от паровой турбины, а в нужный момент особый электрический аппарат освободит закрепленный на колесе снаряд, который и полетит вертикально к зениту».

Дальнейшее движение снаряда (вес которого – для двухмесячного путешествия трех пассажиров – будет достигать 4 тонн) предполагается по ракетному принципу

«Корабль Вселенной должен быть снабжен внутренним двигателем, позволяющим увеличить его собственную скорость и управлять его движениями. Двигатель вовсе не должен быть очень сильным: аппарат, изолированный в пространстве и освобожденный от земного притяжения, перемещается с большою легкостью. Можно применить двигатель с «отдачей», основанной на принципе ракеты: он выбрасывает в пространство массу газа, истечение которого заставит аппарат отклониться. Чтобы получить отклонение в намеченном направлении, вытекание газа может быть произведено по желанию через тот или иной ряд труб, открывающихся наружу снаряда».

Почему надо считать этот проект несостоятельным? Прежде всего, огромные затруднения возникли бы при подыскании материала, который мог бы противостоять развивающейся при таком вращении огромной силе натяжения. По формулам механики легко вычислить, что при окружной скорости 14 км/с и радиусе вращения в 50 м центробежная сила каждого грамма снаряда должна равняться

Это значит, что брусья будут растягиваться с силою, превышающей вес снаряда в 400 000 раз. Так как снаряд предполагается весом 4 т, то сила натяжения брусьев исчисляется в 1 600 000 т. Вспомним, что вся Эйфелева башня весит только 9000 т. Если изготовить брусья из лучшей стали, то, чтобы они могли безопасно выдерживать такое натяжение, им надо было бы дать, при квадратном сечении, толщину в 9 м – при условии, что такой чудовищный брус сам будет невесом…

Совершенно непреодолимо, кроме того, другое затруднение – именно то, которое обусловлено увеличением тяжести внутри снаряда. Надо помнить, что и пассажиры снаряда, кружащиеся в этом колесе, к моменту отправления в космический полет сделаются в 40 000 раз тяжелее и, конечно, будут раздавлены собственным весом. Отослать в полет живых пассажиров с помощью такого колеса, очевидно, немыслимо.

Второй проект – принадлежащий, по-видимому, Графиньи – кажется, на первый взгляд, более осуществимым. Здесь также используется инерция кругового движения, но большое колесо заменено неподвижным кольцевым рельсовым путем, проложенным внутри кольцевого туннеля; поперечник кругового пути – 20 км. По рельсам (рис. 52) скользит (под действием электрического тока) на обильно смазанных полозьях тележка, несущая на себе межпланетный снаряд-вагон. Движение тележки обусловлено особым двигателем, помещающимся вне ее и передающим ей свою энергию по проводу между рельсами. Так как двигатель работает непрерывно, то тележка должна скользить ускоренно. Для уменьшения сопротивления среды воздух внутри туннеля разрежается насосами.

Рис. 52. Круговой крытый рельсовый путь для отлета в мировое пространство. Вверху вправо – воздушный насос

От кругового туннеля отходит, по направлению касательной, ответвление с наклоном вверх. Когда тележка со снарядом, сделав достаточное число оборотов по круговому пути, разгонится до скорости 12,5 км/с, она автоматически переводится на ответвление, на котором и подвергается торможению. Движение тележки замедляется, но лежащий на ней снаряд соскальзывает по инерции с тележки и летит в атмосферу со скоростью 12,5 км/с, которая по выходе из воздушной оболочки в мировое пространство понижается до 10,9 км/с. Управление снарядом в его свободном полете предполагается осуществлять с помощью реактивного двигателя.

Мы замечаем в этом проекте некоторые черты, сближающие его с проектом К.Э. Циолковского. Однако в только что изложенном виде идея Графиньи несбыточна (если даже считать скорость 12,5 км/с достижимой), так как она не учитывает возрастания искусственной тяжести внутри снаряда к моменту его отправления в межпланетный рейс. Хотя тяжесть в данном случае значительно меньше, чем в предыдущем проекте, – вследствие увеличения радиуса кругового пути, – но все же она достаточно велика, чтобы сделать проект несостоятельным. В самом деле: рассчитаем величину центробежной силы для каждого грамма снаряда. Она равна:

Мы видим, что пассажиры к моменту отправления в космическое путешествие сделаются в 1600 раз тяжелее, – возрастание веса, безусловно, смертельное. Значит, как бы постепенно ни нарастала скорость снаряда по окружности, его центростремительное ускорение неизбежно должно превзойти допустимую для живого существа норму.

Что же касается ракетного двигателя, управляющего снарядом в мировом пространстве, то сама по себе идея эта, как мы знаем, вполне целесообразна. Однако в рассмотренных проектах она совершенно не разработана и предположена так наивно, что не может в таком виде рассматриваться как серьезная техническая мысль.

Авторы проектов, очевидно, не дают себе отчета об условиях применения реактивного принципа.

Итак, оба изложенных французских проекта надо отнести к разряду совершенно неосуществимых.