Кинематика: учение об интенсии и ремиссии качеств
Как отмечалось во второй главе, идея последовательности, заключавшая в себе в свернутом виде принципиально иной, по сравнению с аристотелевским учением о сущности, подход к концептуализации явлений окружающего мира, в том числе физических, все глубже входила в сознание средневековых ученых. Попытка ее осмысления в традиционных понятиях аристотелевской метафизики и логики, предпринятая школой Оккама, по существу, привела к выхолащиванию ее содержания. Гораздо более интересную и продуктивную интерпретацию она получает в учении о широте форм, внесшем наиболее оригинальный вклад в разработку проблемы кинематики в средние века.
Поскольку это учение зарождалось на периферии средневековой науки, вдалеке от обсуждений фундаментальных понятий аристотелианской физики, его представители не испытывали необходимости в придирчивом сопоставлении используемых ими концептуальных средств с канонами аристотелизма. Относительно автономное развитие кинематической концепции, опирающейся на разработку новых математических методов, обеспечивалось двумя моментами. С одной стороны, формулировкой основной задачи исследования в терминах изменения качества, т. е. категории, занимающей одно из центральных мест в аристотелевской системе. С другой — отсутствием в физике Аристотеля даже самой постановки проблемы описания процесса качественного изменения. Аристотель, как было показано в 2.2, ограничился признанием того факта, что качество может изменяться и что эта возможность гарантируется существованием материального субстрата. Процесса изменения как особого предмета изучения, со своими специфическими характеристиками, в физике Аристотеля не было.
Именно этот процесс оказывается в центре внимания физики в XIV в. Обращение к его исследованию не рассматривалось средневековыми учеными как «измена» по отношению к основополагающим принципам аристотелизма. Более того, успешное продвижение мысли в неканоническом направлении останавливалось каждый раз, как только возникала необходимость пересмотра концептуальной рамки, задаваемой аристотелизмом.
Учение о широте форм первоначально возникло в средневековой медицине и фармакологии[78]. В основе его лежало представление, которое можно зафиксировать по крайней мере уже у Галена[79], о некоторой области, промежутке, в пределах которого может изменяться качество. От здоровья как такового до крайней степени болезни, за которой следует смерть, можно указать множество состояний разной степени, но уже явной болезни, а также некоторую промежуточную область, где состояние нельзя определенно отнести ни к здоровью, ни к болезни. Характеристика здоровья и болезни на основе учения о четырех жидкостях, или четырех качествах, позволила охарактеризовать область здоровья через равновесие этих качеств: горячего и холодного, сухого и влажного. В тех пределах, пока жидкости, или качества, в смеси присутствуют в равной мере, можно говорить о здоровье, избыток любой из них свидетельствует о болезни. Избыток каждого качества может быть в большей или меньшей степени (обычно четвертая степень была наибольшей, обозначая наибольшее отклонение, за которым могла последовать смерть). Эти градации позволяли оценивать степень болезни и выбирать соответствующее лечение. Широта качества при этом понималась как область, охватывающая все степени этого качества, которые имели, как правило, численную характеристику и выражались в градусах. Часто широта задавалась для пары качеств, например теплое—холодное, так что в середине помещается нейтральная точка или промежуток, градусы одного качества возрастают в одном направлении, градусы другого — в другом.
К концу XIII—началу XIV в. понятие широты формы становится общепринятым. Формируется физическое учение об интенсии и ремиссии качеств, где оно приобретает значительно большую терминологическую определенность, чем в медицинской традиции. Соответствующим образом меняется трактовка важнейших категорий средневековой науки — категорий качества и формы. Новая интерпретация была подсказана развитым в теолого-философской литературе учением о степенях совершенства: качество отныне описывается через рядоположность его степеней, а не как замкнутая в себе качественная определенность, эквивалентная форме в аристотелевском смысле. Очень точно этот смысл схвачен в характеристике, которую дают средневековому понятию широты формы американские исследователи Э. Силла и Дж. Мердок, которые отмечают, что наличие широты противоположно неделимости (см.: [138, 232]).
4.1. Общая характеристика мертонской модели движения
Доктрина интенсии и ремиссии форм, разработка которой связана с именами оксфордских схоластов из Мертонколледжа начала XIV в. Уильяма Хейтсбери, Ричарда Суайнсхеда и Джона Дамблтона, является Одной из наиболее ярких страниц в средневековом учении о движении. В сочинениях представителей мертонской школы новый подход к проблеме качественного изменения, наметившийся в дискуссиях конца XIII — начала XIV в., получает точную математическую формулировку.
В этих работах строится математический аппарат, специально предназначенный для описания движения. Однако, подобно другим математическим построениям, он являл собой априорную, не апеллирующую непосредственно к сфере опыта конструкцию. Своеобразие ее как раз и заключалось в том, что, будучи математической теорией движения, она была в принципе неприложимой к опыту. Она не могла служить для описания каких бы то ни было конкретных физических явлений, так как в ней не вводилось никаких единиц измерения, которые позволяли бы поставить в соответствие теоретическим величинам какие-то опытные данные. На абстрактный характер математических построений мертонцев, имевших форму вычислений[80], указывают многие исследователи. Так, например, А. Майер пишет, что в работах мертонцев «производились вычисления с произвольными числами, сами по себе верные, но не имеющие никакого контакта с реальностью, а значит и никакого физического содержания» [125, 123]. Исходя из этой, в общем справедливой, оценки, А. Майер приходит к выводу, что идеи, развитые в рамках мертонской школы, оказали незначительное влияние на становление науки нового времени, так как «не вели к результатам действительного знания» [125, 111][81].
Однако представляется, что нельзя оценивать значение той или иной доктрины в развитии научного знания только по наличию конкретных результатов, получаемых либо на ее основе, либо на основе последующих теорий в тех случаях, когда историческая преемственность может быть точно зафиксирована. Какая-либо доктрина может ввести в научный оборот идеи и интуиции, которые, не приводя прямо к определенным значительным результатам, позволяют взглянуть на исследуемую реальность под новым углом зрения. Эти идеи и интуиции могут войти в науку в совершенно ином контексте по сравнению с тем, в каком они впервые были явлены, и, может быть, даже без всякой ссылки на доктрины, в которых они впервые были сформулированы. С подобной ситуацией мы и сталкиваемся в случае мертонских калькуляций.
Одну из главных причин повсеместного распространения в средние века аристотелевской модели движения и ее убедительности для средневекового сознания можно видеть в том, что Аристотель разработал ее на основе очень простых и обладающих непосредственной очевидностью интуиции. К ним в первую очередь следует отнести непрерывность и определение движения через полагание двух точек, начальной и конечной (целевое определение). Эта модель не могла иметь конкурирующих до тех пор, пока не были выработаны другие, но столь же простые и убедительные интуиции. Мы попытаемся теперь показать, что мертонцам впервые удалось создать конструктивные схемы движения, принципиально отличные от аристотелевских и, по существу, заложившие фундамент математической физики нового времени.
Круг проблем, анализируемых мертонскими схоластами, был задан понятиями интенсии и ремиссии. Эти понятия, как отмечалось, уже использовались при описании качественного изменения, но лишь в мертонской школе был найден математический образ, в котором была схвачена и рационально выражена новая исследовательская установка, неявно присутствовавшая в предшествующих дискуссиях о движении.
Самой характерной чертой определения интенсии и ремиссии в разработках мертонской школы является зависимость между величиной градуса и отстоянием его от некоторой точки отсчета. Обычно за точку отсчета принималась нулевая интенсивность («не-градус» — non-gradu), которая соответствует полному отсутствию данного качества. Примером может служить следующее определение в трактате «Об интенсии и ремиссии» упомянутой уже «Книги вычислений» Суайнсхеда: «Цнтенсия определяется отстоянием (distantia) от не-градуса, а ремиссия — приближением к не-градусу» [155, 158].
Следует отметить, что широта качества мыслилась как конечная величина. В этом отношении учение о широте форм не выходит за рамки традиционного аристотелизма, для которого всякое изменение является конечным ввиду предзаданности финальной точки, где оно должно прекратиться. Но в любом конечном отрезке (в том числе и в репрезентирующем широту качества) обе точки — начальная и конечная — являются выделенными, поскольку они определяют отрезок в целом. Сам факт выбора одной из этих точек в качестве главной (точки отсчета) уже является красноречивым свидетельством трансформаций, происшедших с понятием изменения. Когда об изменении судят по двум точкам (начальной и конечной), то оно сразу целиком предстает перед умственным взором исследователя; последний оценивает лишь результат свершившегося (или долженствующего быть) изменения, процесс же изменения выпадает из его поля зрения. Чтобы выразить его, надо найти рациональный аналог того аспекта, который присутствует в процессе и отсутствует в результате изменения, — не одновременную, а поэтапную реализацию изменения, последовательное развертывание его моментов. Самой простой рациональной моделью этого аспекта является процесс счета. Начиная с работ мертонской школы, интуиция счета становится базисной интуицией учения о движении, придя на смену аристотелевским понятиям субстрата и целевой причины. И фиксация единственной (выделенной) точки в изменении (вместо двух) в качестве точки отсчета служит показателем наблюдаемого в то время сдвига.
Этот сдвиг, как и все трансформации, происходившие в средневековой науке, совершался отнюдь не путем отбрасывания традиционных представлений и противопоставления им новых взглядов; старые предпосылки оставались в неприкосновенности, а новые идеи включались в устоявшуюся систему. Идея отсчета величин градусов реализовалась, как уже отмечалось, на конечном отрезке, характеризующем широту изменения качества. Поэтому не только начальный, но и конечный градус мог быть принят за точку отсчета. И действительно, среди вариантов, упоминаемых Суайнсхедом, мы находим такие: «интенсия любого качества определяется приближением к высшему градусу или самому интенсивному градусу его широты; ремиссия — расстоянием от высшего градуса»; «интенсия определяется отстоянием от неградуса, ремиссия — расстоянием от высшего градуса» [155, 158]. Показательны соображения, заставившие Суайнсхеда остановить свой выбор на не-градусе. Исходя из интуитивного представления о зависимости, существующей между величиной градуса на шкале интенсии или ремиссии и величиной, характеризующей степень удаленности (или близости) этого градуса от точки отсчета, Суайнсхед показывает, что если определять интенсию степенью приближения к высшему градусу, то тогда нельзя будет говорить о градусе, менее интенсивном, чем данный, в сколь угодное число раз. В частности, «не существует градуса, в два раза менее интенсивного, чем средний градус широты», поскольку «нет градуса, который отстоит в два раза дальше от высшего градуса, чем средний градус между высшим и не-граду-сом» [там же], так как вдвое дальше от высшего градуса, чем средний, отстоит не градус, а не-градус. Поэтому предположение, что величина интенсии будет тем больше, чем меньше расстояние, отделяющее данный градус от высшего (а именно этот смысл, по-видимому, вкладывается Суайнсхедом в формулировку, что «интенсия любого качества определяется приближением к высшему градусу»), противоречит требованию, предъявляемому к любой величине, а именно, чтобы всегда существовала величина, сколь угодно меньшая данной.
Другой довод Суайнсхеда против измерения интенсии степенью приближения к высшему градусу состоит в том, что в данном случае неизбежно обращение к понятию бесконечности, что порождает большие трудности. Измерить степень «приближения» к высшему градусу можно только одним способом — оценив путь, который необходимо пройти, чтобы достичь высшего градуса интенсивности. Но прохождение этого пути, как и всякого геометрического отрезка, предполагает «пересчет» бесконечного числа точек (в данном случае градусов). Эти промежуточные точки (градусы) лежат ближе к высшему градусу широты, а некоторые из них будут бесконечно ближе к нему, чем данный. Следовательно, умозаключает Суайнсхед, «высший градус имеет бесконечную интенсивность» [там же].
Такое умозаключение естественно, если исходить из предпосылки, на которой основано все рассуждение Суайнсхеда, а именно: чтобы измерить расстояние до высшего градуса, надо взять бесконечную последовательность промежуточных градусов и просуммировать все расстояния между соседними градусами в этой последовательности. Последовательное прибавление «минимальных» расстояний по существу задает механизм того «приближения» к высшему градусу, с помощью которого должна измеряться интенсия. Поскольку процесс приближения к высшему градусу означает, что изменение еще не завершилось, то высшего градуса, т. е. конечного пункта изменения, еще нет; поэтому, строго говоря, «минимальные расстояния» нельзя представлять себе в виде частей отрезка, соединяющего данный градус с высшим, так как о таком отрезке может идти речь только в момент когда изменение подойдет к концу. Суммированию, следовательно, подлежат не части конечной величины, а отдельные величины. Сумма таких величин, по суждению Суайнсхеда, будет бесконечной величиной. Отсюда вытекает, что «высший градус» будет также иметь бесконечную интенсивность, поскольку шкала интенсии определена так, что одна и та же пропорция характеризует отношение величин градусов и отношение их расстояний от точки отсчета.
Таким образом, интуиция счета, взятая за основу модели движения, сразу же приводит к необходимости оперировать бесконечными последовательностями. Но с бесконечными последовательностями, образующимися в результате добавления членов к уже имеющимся, мертонцы не умели еще работать. Они предпочитали иметь дело с частями уже данного конечного отрезка, получаемыми в результате его последовательных делений. Определение интенсии не через приближение, а через отстояние от точки отсчета (не-градус) позволяет задать величину градуса с помощью конечного отрезка, характеризующего уже происшедшее изменение. Зависимость между величиной градуса и его отстоянием от точки отсчета становится в данном случае совершенно прозрачной. «Если некое количество, — пишет Суайнсхед, — больше отличается от нуля (a non-quanto), чем другое количество, то оно называется большим; отсюда точно так же, если нечто дальше отстоит от не-градуса своей интенсивности, то оно называется более интенсивным» [там же]. Если интенсия представляет собой движение в одном направлении, то ремиссия есть аналогичное движение, но в обратном направлении[82]. Поэтому «терять ремиссию есть не что иное, как приобретать интенсию, что понятно, поскольку ремиссию следует понимать как недостаток интенсии» [там же].
4.2. Математические предпосылки создания новой модели движения
Разъясним теперь более подробно, что мы имели в виду, говоря об основной интуиции мертонской школы, обращение к которой знаменовало начало нового — неаристотелевского — этапа в развитии учения о движении. Может показаться, что смысл доктрины интенсии и ремиссии качеств (и все цитированные выше отрывки из «Книги вычислений» Ричарда Суайнсхеда как будто свидетельствуют в пользу этого мнения) не только не сводим к интуиции счета, но и прямо ей противоположен: Суайнсхед исходит из предположения о непрерывности качественного изменения, непрерывности движения и ищет способ, с помощью которого можно было бы охарактеризовать процесс возрастания или убывания величины, рассматриваемой как мера интенсивности качества. Если счет представляет собой дискретную последовательность элементарных шагов, каждый из которых приводит к полаганию нового числа, отличающегося от предыдущего на совершенно определенную величину (например, единицу), вследствие чего ряд, порождаемый в процессе счета, состоит из дискретных величин, то восходящее к Аристотелю представление о непрерывности отрицает наличие в непрерывном ряду вообще какого бы то ни было «расстояния», разделяющего значения двух произвольно взятых точек. Однако объяснительной силы, заключенной в аристотелевском понятии непрерывности, согласно которому в непрерывной величине между любыми двумя точками всегда может быть найдена третья, промежуточная, было достаточно только для того, чтобы исключить случай мгновенного изменения; оно было совершенно неконструктивным в том смысле, что не влекло никаких новых способов описания движения, не вело к формированию соответствующего языка. Решающий шаг к созданию такого языка был сделан в работах мертонских «калькуляторов». Удалось им его создать в значительной мере благодаря новому подходу к проблеме непрерывности: они оперировали не с непрерывностью как таковой, а с бесконечными дискретными последовательностями[83], каждая из которых выделяет в континууме дискретное (упорядоченное) множество частей. Непрерывность у мертонцев была фоном, на котором развертывалось построение дискретных последовательностей; но тем самым переосмыслялось само понятие непрерывности: если Аристотель вводит это понятие, апеллируя к процедуре деления, которая может быть продолжена до бесконечности, — процедуре, несовместимой с существованием дискретных величин и в этом отношении представляющей собой альтернативу процессу счета, — то непрерывность для исследователей из Мертонколледжа служит предпосылкой для организации процедур счета, приводящих к образованию различных последовательностей. Постулат непрерывности оказывается у них, по сути дела, синонимом существования бесконечного числа различных способов «пересчета», отличающихся «длиной» элементарных шагов, который может быть осуществлен на любом отрезке, рассматриваемом как непрерывная величина. Иначе говоря, вместо непрерывности, определяемой отрицательным образом, как отсутствие дискретных частей, которые могут быть сосчитаны, «калькуляторы» работают с непрерывностью, подлежащей счету (хотя и не могущей быть сосчитанной единственным образом, с помощью той или иной конкретной процедуры счета), т. е. она фактически оказывается результатом совмещения в одном ряду бесконечного числа считаемых последовательностей.
Чтобы оценить вклад мертонской школы в формирование математического понятия непрерывности (и в учение о движении, понимаемом как непрерывный процесс), недостаточно отметить, что в работах представителей этой школы дискретные последовательности становятся рабочим инструментом исследования непрерывности; надо учесть, что хотя античная математика и сформулировала ряд примеров числовых последовательностей (например, арифметическая и геометрическая прогрессия), но, во-первых, последовательность так таковая, как особого рода математический объект, не была в ней предметом специального исследования, а, во-вторых, указанные последовательности играли весьма незначительную роль в математических исследованиях. Античные математики занимались главным образом сопоставлением величин, скажем, величин отрезков, составляющих ту или иную геометрическую фигуру; с этой целью в античности была детально разработана теория пропорций, позволяющая сравнить между собой любые конечные величины. В тех сравнительно немногочисленных случаях, когда применялись инфинитезимальные методы, использовался процесс последовательного приближения к пределу, однако, как правило, в контексте решения геометрических задач; обобщенная, теоретико-числовая формулировка построений такого типа отсутствовала в математике древних. И в этом отношении работы мертонцев представляют значительный шаг вперед.
В работах Хейтсбери, Суайнсхеда, Дамблтона. происходит переосмысление понятия величины. В античной математике господствовали геометрические интуиции: величины представлялись в ней в виде отрезков различной длины. Такая геометрическая трактовка понятия величины была неслучайной. Существует несомненная связь между аристотелевской концепцией движения и античным понятием величины. Как движение (увиденное сквозь призму целевого определения), так и отрезок характеризуют, по сути дела, одним и тем же способом: путем задания двух точек, начальной и конечной. Вследствие этого и отрезок, и понимаемое таким образом движение предстают как нечто данное, завершенное, воспринимаемое сразу, целиком.
«Геометризация» величин влечет за собой выдвижение на первый план количественных характеристик: в центре внимания оказались те особенности понятия величины, которые схватываются понятием «количественное число»; геометрия древних не благоприятствовала развитию интуиции, заложенных в порядковых характеристиках числа. Для этого необходимо было от оперирования с актуально данными количествами перейти к величинам, рассматриваемым в процессе их последовательного порождения. Пусть это будут величины, характеризующие длину отрезков, но не заранее данных, а получаемых в определенном порядке в результате повторного деления исходного отрезка на равные части. Именно это и делают исследователи из Мертон-колледжа.
4.3. Различение экстенсивных и интенсивных параметров движения. Скорость как интенсивная величина
В рамках учения об интенсии и ремиссии мертонцы создают основы нового учения о движении, радикально переосмысляя в ряде пунктов аристотелевскую концепцию движения. Главную роль в их учении о движении играет понятие равноускоренного движения (униформно-дифформного, по их терминологии). «Всякое движение является равномерно ускоренным (uniformiter intenditur), если за любую равную часть времени оно приобретает равное приращение (latitudo — буквально, широту) скорости» [103, 241]. Ключевым понятием в этом определении, безусловно, является понятие «скорость» (velocitas). У Аристотеля, как известно, не было термина, аналогичного средневековому velocitas; описывая движения, он выделял среди них «более быстрые» и «более медленные». Эти выражения только в том случае могут интерпретироваться как указывающие на различие скоростей при сопоставлении разных движений, если понятие скорости как таковое уже есть; до тех пор, пока оно не сформировано, приписывать терминам «более быстрое» и «более медленное» тот же смысл, что и более позднему термину «скорость», нельзя, не стирая принципиальной границы, отделяющей ранний (аристотелевский) этап в развитии учения о движении от более поздних (мертонского и галилеевского). Чтобы убедиться в этом, достаточно обратить внимание на аристотелевское определение «более быстрого» (из которого, путем очевидных модификаций, получается и определение «более медленного»). Аристотель дает два варианта определения: более быстрое движение 1) преодолевает то же расстояние за меньшее время; 2) за одно и то же время преодолевает большее расстояние. Отметим прежде всего то обстоятельство, что в определении идет речь о разных движениях, а не о частях одного и того же движения. Это не случайно, ибо сравнению подлежит уже закончившееся, завершенное движение, точнее, его результат, выражающийся в прохождении некоторого отрезка пути за определенный отрезок времени.
В отличие от механики нового времени, отождествившей (хотя и не сразу) понятие скорости с отношением двух величин (пути и времени), на протяжении всего средневековья скорость понималась как особого рода качество, присущее телу только в момент его движения. Скорость, понимаемую как качество, нельзя свести ни к какому отношению, и не только потому, что для этого потребовалось бы ввести отношение между неподобными величинами, а это противоречило традиции, в русле которой развивалась математика со времен античности. Скорость не могла быть представлена в виде отношения прежде всего потому, что она была подведена под другую категорию. Присущая схоластике культура логического мышления удерживала исследователей от искушения перевести понятие, соответствующее категории качества, в другую категорию. Считалось допустимым сопоставить одному качеству одно понятие, принадлежащее к другой категории, например некоторую величину, а отношению качеств — отношение величин (установление таких соответствий является как раз одной из наиболее характерных черт учения о движении в рассматриваемый период), но нельзя было за меру одного качества взять отношение нескольких величин.
К качествам, рассматривавшимся Аристотелем, средневековые авторы добавили новое: качество движения (qualitas motus), совпадающее с его интенсивностью (intensio motus). Качество движения они отличали от его количества (quantitas motus). Это очень важное для средневековой механики различие появилось в результате приложения к учению о движении фундаментального различия, введенного в XIV в. в схоластику, выражаемого противопоставлением интенсивного и экстенсивного. Анализируя динамический аспект движения, Томас Брадвардин в «Трактате о пропорциях скоростей в движениях» (1328 г.) приходит к выводу, что о зависимости, существующей между скоростью движения и сопротивлением среды, можно говорить в двояком смысле. Среда в целом и части среды «будут равны по качеству сопротивления», но, очевидно, отличаться по количеству (имеется в виду случай движения в однородной среде). Поэтому, если сопоставить между собой различные части движения одного и того же тела, то окажется, что они «не отличаются по качеству движения (которое есть быстрота и медленность — velocitas et tarditas), но скорее различаются по количеству движения (которое есть долгота или краткость времени — longitudo vel brevitas temporum)» [162, 118].
Из трактата Брадвардина различение качества и количества движения перешло в работы мертонских «калькуляторов», а оттуда — к Николаю Орему, парижскому номиналисту, которому удалось придать учению о широте форм гораздо более удобопонятный вид благодаря использованию геометрических методов. В «Трактате о конфигурации качеств» (написан до 1371 г.) Орем предлагает изображать интенсивность любого качества, в том числе и соответствующую качеству движения, «в виде прямой линии, направленной отвесно в какой-нибудь точке пространства» [46, 637], а экстенсивность — посредством линии, проведенной через предмет, на каковой линии отвесно поставлена линия интенсивности его качества» [46, 640]. Интенсивность качества является характеристикой, независимой от пространственной протяженности и временной длительности, присущей, в отличие от двух последних, любому качеству: «ни одно качество, приобретаемое в процессе качественного изменения, не может быть воображаемо без интенсивности, т. е. без различия в смысле интенсивности, тогда как оно вполне может быть воображаемо без экстенсивности, более того, качество неделимого предмета (например, души или ангела) экстенсивности не имеет» [46, 639]. Интенсивная характеристика движения (его качество), не имеющая протяженности и длительности, — это мгновенная скорость, или, что то же самое, интенсивность скорости (intensio velocitatis)[84]. Движение в целом оказывалось тогда как бы состоящим из неделимых моментов, но показательно, что вместо точки — геометрического образа момента движения в античной физике — Орем говорит о перпендикуляре, т. е. об отрезках определенной длины, только величина этих отрезков непосредственно не имеет никакого отношения к протяжению и длительности, т. е. к экстенсивным параметрам движения. «Интенсивные величины» (соответствующие intensio motus, intensio velocitatis) были величинами другого, не пространственно-временного измерения. Они вели себя как величины до тех пор, пока их сравнивали только между собой, отвлекаясь от экстенсивного аспекта движения, представленного в понятии количества движения, или целокупной (суммарной) скорости (quantitas motus, totalis velocitas). На геометрическом языке Орема последнему понятию соответствовала площадь фигуры, образованной в результате суммирования всех скоростных перпендикуляров, указывающих величину intensio velocitatis в каждый момент движения. Площадь, таким образом, мыслилась состоящей из линий, из того, что не имеет величины, если под величиной подразумевать только обладающее двумя измерениями. Тем самым был решен вопрос о наглядной геометрической иллюстрации соотношения понятий качества и количества движения.
Но каков был физический смысл этих понятий? Чтобы оценить его адекватно, надо учесть принципиальное различие в трактовке понятия скорости, даваемой, с одной стороны, средневековым учением о широте форм, а с другой — механикой нового времени, о чем уже упоминалось в общих чертах. Если скорость в классической физике определяется через путь и время, то в средневековой ее величина (градус скорости) задается совершенно произвольно. Средневековые авторы, говоря о том, что движущееся тело имеет скорость 2, 4, 6 или п, даже не пытались выяснить, что это значит, каким образом можно измерить эти величины, к какой системе единиц они относятся. На этом основании А. Майер относит in-tensio velocitatis к понятиям скорее метафизическим, чем физическим (см.: [125, 122]). Определению скорости как интенсивности (под которое подпадает и общее определение мгновенной скорости) она противопоставляет другое определение мгновенной скорости, которое было дано Хейтсбери: «Скорость в любой данный момент времени будет определяться путем, который был бы описан наиболее быстро движущейся точкой, если бы в течение некоторого периода времени она двигалась бы равномерно с той степенью скорости, с которой она двигалась в этот момент, какой бы момент ни был указан» [103, 240]. А. Майер, по-видимому, права, рассматривая понятие интенсивности скорости (характеризуемое «интенсивной величиной» — градусом скорости) и определение скорости через экстенсивную величину (путь) как совершенно различные определения, внутренне не связанные между собой. Точно так же Майер настаивает на отсутствии какой бы то ни было связи и между понятиями суммарной (total) скорости и пути, отказывая вследствие этого понятию velocitas totalis в физическом содержании. Разбирая оремов способ представления суммарной скорости в виде площади геометрической фигуры, она резюмирует: «Мера этой площади есть не что иное, как совокупное количество наличных скоростей: понятие, лишенное физического значения. Отсюда нет пути к познанию, что эта мера отвечает пройденному пути». Только «гениальная небрежность» Орема, как пишет далее А. Майер, позволяет ему приравнять velocitas totalis к пути. У Орема «на место понятия о скорости, которое только что применялось и которое обозначало интенсивность движения, молчаливо подставляется другое, которое приравнивает per definitionem суммарную скорость—пути» [125, 129; цит по: 23,134].
Может быть, А. Майер не совсем права, объявляя отрывок из «Трактата о конфигурации качеств», где Орем прямо устанавливает зависимость между суммарной скоростью и пройденным путем, как случайный и непоказательный для Орема. Следует скорее согласиться с В. П. Зубовым (см.: [23, 133—134]), что Орем с полной определенностью формулирует положение о пропорциональности суммарной скорости и пути, когда пишет: «Если бы что-либо движущееся двигалось в первую пропорциональную часть какого-либо времени {например, часа], а во вторую часть двигалось бы вдвое быстрее, а в третью — втрое быстрее, и так непрерывно до бесконечности, то суммарная скорость (velocitas totalis) оказалась бы ровно в 4 раза больше суммарной скорости первой части, так что движущееся за весь час прошло бы вчетверо большее расстояние, нежели' то, которое оно прошло за первую часть этого часа» [46, 710]. Однако А. Майер, как нам представляется, безусловно права, настаивая на том, что в основе средневекового учения о движении лежали понятия интенсивности скорости и суммарной скорости, которые имели совсем иное концептуальное содержание, чем определение скорости посредством пройденного пути, вошедшее в механику нового времени в качестве основного. Вызывает возражение другое — ее решительный отказ признать за понятием скорости как меры интенсивности движения реальное физическое содержание. Стержневая идея средневекового учения о широте форм — описать движение и качественное изменение исходя из понятия интенсивности — получает у А. Майер негативную оценку, рассматривается ею как тупиковый (с точки зрения последующего развития физики) путь.
Действительно, произвольное приписывание числовых значений градусам скорости исключает вопрос об эмпирической интерпретации этих значений, так что в принципе невозможно установить какое-либо соответствие между теоретически вычисленными величинами intensio velocitatis и velocitas totalis и конкретными физическими величинами, поддающимися измерению. Измерить можно только экстенсивные параметры движения: путь и время, и до тех пор, пока величина скорости определяется независимо от этих параметров, она остается величиной, неверифицируемой в опыте, равно как и вся математическая модель движения, включающая интенсивные величины, не сводимые к экстенсивным. Поскольку экстенсивные величины фиксируют результат движения (пройденный путь и время прохождения), то решение проблемы измерения означает, что найден способ судить по результатам закончившегося движения о движении как таковом, о параметрах, характеризующих процесс его протекания, в частности о скорости. Такая реконструкция процессов, происходящих в природе, по наблюдаемым эффектам, которые они вызывают и появление которых свидетельствует об окончании того или иного этапа изменения, является, безусловно, важнейшей задачей физики. Но не единственной. Прежде чем сводить интенсивные (ненаблюдаемые) величины к экстенсивным (наблюдаемым), необходимо сначала создать теоретическую модель, которая объединила бы оба типа величин в рамках одной концептуальной схемы. Объединить — это значит указать определенный способ их соподчинения. Внутри такой модели результаты изменения выводятся из параметров, характеризующих сам процесс изменения, т. е. порядок отношения причин и следствий является прямым, в отличие от случаев, когда процесс реконструируется по результатам. Конечно, в итоге такого выведения желательно получить такие экстенсивные величины, которые можно соотнести с данными опыта. Но, быть может, самым важным этапом при разработке такой модели является открытие принципа, позволяющего установить (на концептуальном уровне) связь между процессом движения и его результатом.
Интенсивность движения и градус скорости как мера этой интенсивности являются понятиями, исходя из которых мертонцы и Орем строят свою модель движения. С помощью этих понятий они пытаются найти ключ к тем различиям, которые выявляются при рассмотрении движения как актуально происходящего процесса — к его быстроте и медленности, равномерности и неравномерности и т. п. Для них очевидно, что процесс движения нельзя выразить посредством «экстенсивных» величин (времени и пространства) — единственных, которыми пользуется Аристотель при объяснении движения. Концептуальный образ движения, на который они ориентируются (учитывая, конечно, что его контуры были намечены только в общих чертах в учении о широте форм), можно, пожалуй, сформулировать так: движение — это становящаяся последовательность inlensio velocitatis. В геометрии этой последовательности будет соответствовать не отрезок, а фигура, возникающая в ходе последовательного суммирования «скоростных перпендикуляров». Хотя перпендикуляры, как считалось, непрерывно покрывают всю площадь фигуры, однако для вычисления широты (latitudo velocitatis), т. е. приращения скорости (в случае равноускоренного движения), необходимо было выделить дискретную последовательность, в которой градусы скорости располагались бы на определенном расстоянии друг от друга. У мертонских кинематиков (и в этом легко убедиться, если проанализировать различные варианты доказательств теоремы о средней скорости, содержащейся в их работах) представление о дискретной последовательности градусов скорости, образуемой путем полагания, шаг за шагом, на фиксированном расстоянии отдельных градусов скорости, играет роль исходной интуиции, предопределяющей ход всех дальнейших рассуждений. Реальному физическому движению ставится в соответствие процесс образования последовательности, процесс счета, но в отличие от обычного процесса счета (временные) интервалы между считаемыми единицами в данном случае не являются произвольными. Экстенсивная величина (в частности, время) выполняла при порождении такой последовательности фактически функцию начала дискретности, средства разделения членов последовательности, и в качестве такового время было не «независимой переменной», а внутренним временем, одним из аспектов процесса счета. Еще раз подчеркнем, что все вышеизложенное — не пересказ положений, в явном виде сформулированных мертонцами, а скорее попытка восстановить те интеллектуальные интуиции, которыми они руководствовались в своем творчестве.
4.4. Определение униформного (равномерного) и униформно-дифформного (равноускоренного) движения — новый подход к проблеме непрерывности
Выявить рабочие, проявляющиеся в способах рассуждений и доказательств, регулятивы, не только отчетливо не формулируемые, но зачастую и не осознаваемые самими исследователями прошлых эпох, важно по двум причинам. Во-первых, для того чтобы яснее уловить различие в постановках и видении одних и тех же проблем, занимавших умы ученых в разные периоды истории науки. Во-вторых, с целью восстановить первоначальный взгляд на проблему, который, именно потому, что он первый, может, как и любое первое, свежее впечатление, содержать такие моменты, которые утрачиваются при дальнейшей логической разработке. Поэтому обращение к исходным интуициям, какими бы наивными они ни казались, может служить своеобразным дополнением к той работе, которая проводится по выяснению логических оснований науки на зрелом этапе ее развития — дополнением, способным внести коррективы в понимание структуры научного знания.
Если под этим углом зрения взглянуть на работы мертонцев, то, помимо отмеченной концептуализации времени как внутреннего времени «счета» (начала дискретности при построении последовательности), в них находит отражение и ряд других интуиции, столь же не-похожих на идеи, игравшие руководящую роль в кристаллизации собственно физических и математических аспектов учения о движении в новое время. В мертонцах видят (и вполне обоснованно) предшественников доктрины бесконечно малых. Излюбленный метод доказательств теорем, сформулированных ими относительно движения, включал в себя: 1) разбиение широты движения, т. е. величины, характеризующей положительное или отрицательное приращение скорости за определенный (конечный) отрезок времени, на части, получающиеся при (бесконечно продолжающемся) процессе дихотомического деления этой величины; 2) представление каждой части широты в виде бесконечного множества «моментов»; 3) установление соответствия между моментами, принадлежащими разным бесконечным множествам моментов. Наряду с идеей суммирования бесконечного множества моментов (или intensiones velocitatis), о чем уже шла речь выше, указанные способы доказательства, безусловно, относятся к инфинитезимальным методам. В них отчетливо просматривается и идея функциональной зависимости. Но вот что интересно: все эти интуиции представляют собой не просто несовершенное выражение математических понятий, точная формулировка которых была дана впоследствии, в них многие акценты расставлены иначе, чем в позднейших формулировках.
Например, понятие непрерывности, столь важное для анализа движения и в то же время с большим трудом операционализируемое (чтобы это понятие «заработало» в полную силу, понадобилось создать дифференциальное и интегральное исчисления), в работах мертонцев фактически используется в двух существенно различных смыслах. Один — традиционный, аристотелевский, согласно которому непрерывность является первичным, неопределяемым понятием науки. Будучи таковым, она противостоит другому неопределяемому понятию — дискретности. Непрерывное и дискретное в данном случае оказываются равноправными (в смысле — в равной степени неопределяемыми) интуициями, взаимно исключающими друг друга: нельзя об одном и том же предмете, рассматриваемом в одном и том же отношении, одновременно утверждать, что он и непрерывен и дискретен.
Другой смысл понятия непрерывности лучше всего пояснить на призере мертонских дефиниций различных видов движения: униформного (равномерного), униформно-дифформного (равноускоренного), дифформно-дифформного (неравноускоренного). В уже цитированном определении Хейтсбери равноускоренного движения говорится о равных приращениях скорости «за любую равную часть времени». В том же сочинении Хейтсбери содержится и определение равномерного движения: «Из локальных движений то называется равномерным, в котором равные расстояния (spatium) постоянно (continue) проходятся с равной скоростью (equali velocitate) в равные части времени» [103, 238]. В нем также присутствует идея разделения всего времени движения на равные части, хотя не уточняется, что рассмотрению подлежат любые равные части времени. Это столь же важное для определения равномерного движения, как и движения равноускоренного, слово «любой»[85] впервые было употреблено в определении равномерного движения Суайнсхедом: «равномерное локальное движение — то, в котором за любую равную часть времени описывается равное расстояние» [156, 245]. Наконец, дифформно-дифформное движение определяется как отсутствие униформности: оно не характеризуется ни равной скоростью, ни равными приращениями скорости, если сопоставляются части движения, выделяемые при любом разбиении времени, в течение которого оно происходит, на равные промежутки.
Разбиения такого рода являются главным компонентом всех трех определений. Каждое разбиение дает возможность представить время движения в виде последовательности (одинаковых) временных интервалов. В любом из указанных определений предполагается, что для ответа на вопрос, к какому типу относится то или иное движение, достаточно рассмотреть все дискретные последовательности временных интервалов, в соответствии с которыми оно может быть подразделено. Непрерывный характер движения оказывается как бы следствием совмещения всех дискретных последовательностей в одном ряду. Вместо бесконечного множества дискретных последовательностей в результате такого совмещения получается, если можно так выразиться, одна-единственная «непрерывная» последовательность.
Идеи мертонцев несли в себе зачатки нового подхода к определению понятия непрерывности. Не все из них, как представляется, реализовались в последующем развитии математики. Согласно утвердившимся в математике взглядам, «непрерывное» (характеризующее континуум) отношение порядка отличается от «дискретного» отсутствием одного из признаков последнего, гарантирующего существование единственного элемента, непосредственно следующего за данным (или предшествующего ему). Следуя по пути, намеченному мертонскими кинематиками, можно прийти не к негативному определению «непрерывного отношения» (а значит, и континуума в целом), превращающему непрерывное в недискретное, в противоположность дискретного, а к положительному определению его через дискретное, причем на совершенно других основаниях, чем это попытался сделать Кантор в своей теории множеств. Быть может, если бы в развитии математики реализовались возможности, заложенные в мертонских интуициях движения, не пришлось бы в настоящее время констатировать наличие «пропасти между областью дискретного и областью непрерывного» [65, 240], преодолеть которую математика пока оказалась не в состоянии.
4.5. Соотношение понятий скорости, времени и пространства в мертонской кинематике
Если вклад мертонцев в исследование проблемы непрерывности является следствием разработки ими других проблем и его приходится реконструировать из определений равномерного и равноускоренного движения, то при анализе другой фундаментальной темы, образующей лейтмотив мертонских штудий, — соотношения понятий скорости, времени и пространства — мы имеем возможность опереться на непосредственные свидетельства самих исследователей. Одним из самых выразительных является отрывок из трактата «О движении», приписываемого Суайнсхеду. «Следует знать также, что как интен-сия движения относится к движению, так движение относится к пространству, ибо как пространство проходится посредством движения, так движение нарастает и приобретается посредством интенсии движения. Значит, как в локальном униформном движении скорость оценивается по максимальной линии, которую описывает некоторая точка, так в интенсии движения скорость оценивается по максимальной широте движения, приобретаемой в то или иное время. Всегда, когда есть униформная интенсия локального движения, будет униформно-дифформное локальное движение. Поскольку униформно-дифформное локальное движение соответствует в отношении своего эффекта среднему градусу, то очевидно, что за одно и то же время будет столько же пройдено посредством среднего градуса, сколько и посредством униформ-нодифформного локального движения» [156, 245—246][86]. Этот отрывок, во-первых, подтверждает высказанное выше утверждение о том, что понятие интенсии движения является выделенным понятием мертонской кинематики и что в этой кинематике общее представление о движении определялось в первую очередь двумя факторами: его «качеством» и «внутренним» временем — временем конструирования «непрерывной последовательности» in-tensionum motus. Во-вторых, он дает возможность представить механизм соподчинения различных факторов, из которых слагается движение, — в этом пункте мертонские «калькуляторы» были наиболее оригинальны, и здесь, как в фокусе, сконцентрировались основные идеи, превратившие мертонские исследования в очень своеобразный этап в развитии физики.
Характерна фраза в начале цитированного отрывка, в которой устанавливается нисходящая иерархия понятий «интенсия»—«движение»—«пространство»[87]. Одной этой фразы достаточно, чтобы почувствовать дистанцию, отделяющую доктрину мертонской школы от аристотелевского учения о движении. У Аристотеля цель движения (логически) предшествует процессу движения: последний не может начаться, пока не задана его конечная точка; мертонцы также ищут начало, обусловливающее процесс движения, но находят его в том, что получило у них название интенсии движения. Интенсия движения, как мы помним, совпадает с его скоростью (или в некоторых контекстах — ускорением), представляемой прежде всего в виде особой (интенсивной) величины, непосредственно не связанной не только с путем, но и с временем движения. Это выделение в качестве важнейшего определяющего момента движения фактора, не имеющего отношения ни ко времени, ни к пространству, и в то же время обусловливающего процесс протекания движения, его быстроту или медленность, привело в недоумение многих современников мертонских «калькуляторов». Они отвергли представление о мгновенной (т. е. интенсивной) скорости ввиду его очевидной противоречивости: «мгновенное движение ни быстро, ни медленно, так как быстрое и медленное определяется временем»[88]. Действительно, если видеть в скорости вторичную характеристику, производную от движения, — а такого именно взгляда на скорость, точнее, на быстроту и медленность движения, придерживался Аристотель и вслед за ним большинство схоластов, — то о скорости можно судить только по результатам сопоставления временных и пространственных параметров уже закончившихся движений (или различных частей одного движения). Поскольку для традиционного аристотелизма скорость была не причиной, а, так сказать, побочным эффектом движения, следствием его «экстенсивных» (временных и пространственных) характеристик, то неудивительно, что словосочетание «мгновенная скорость» звучало для представителей этого направления более чем странно. Но примечательно другое: выражение «мгновенная скорость» с точки зрения физики нового времени тоже лишено всякого смысла, если оно понимается буквально. В классической механике мгновенная скорость отнюдь не мгновенна; хотя и не сразу, это понятие в рамках механики нового времени «аристотелизируется», т. е. становится понятием, определяемым через бесконечно малый путь, проходимый в бесконечно малое время. Только с ретроспективной точки зрения мгновенная скорость средневековой кинематики может показаться зародышем позднейшего понятия, утвердившегося в классической механике, чье отличие от первоначального представления объясняется лишь степенью развития математического аппарата. Но если понятие мгновенной скорости насильственно не изымать из контекста средневековой физики, то буквальное истолкование мгновенности уже будет выглядеть не признаком логической непроработанности этого понятия, а показателем принципиально иного подхода к осмыслению понятия скорости, чем тот, который был реализован в классической механике.
Здесь уместно напомнить приведенное выше суждение А. Майер о пропасти, разделяющей интенсивную трактовку скорости (в рамках которой первоначально вводилось определение мгновенной скорости) и любую попытку выразить это понятие через путь и время. Констатация этого факта послужила ей основанием для вывода о физической бессодержательности концепции интенсивной скорости. Против этой оценки трудно что-либо возразить, если не обратить внимание на обстоятельство, сразу же оговоренное нами, как только речь зашла о понятии интенсивной (и мгновенной) скорости: это понятие в мертонской доктрине фактически выполняет функцию формальной причины движения. Оно, конечно, не является формальной причиной в строгом, аристотелевском, смысле слова. Сами исследователи из Мертон-колледжа не называли скорость причиной движения, поскольку они считали себя продолжателями аристотелевской традиции в физике и не подвергали сомнению аристотелевское учение о четырех причинах. Но место, отводимое скорости в иерархии понятий, предназначенных для описания движения, создание концепции мгновенной скорости и наличие двух разных способов ее интерпретации могут служить аргументами в пользу высказанной нами точки зрения. Мгновенная скорость, стоит только предположить, что она является формальной причиной движения, тотчас же превращается из самопротиворечивого во вполне определенное понятие, поскольку никакая причина в аристотелевской физике не является объектом, локализуемым в пространстве и времени, т. е. не имеет пространственно-временных измерений. Кроме того, становится понятным, почему в средневековой физике мгновенная скорость получила двойное определение: интенсивное и экстенсивное — через путь, когда «всякому градусу локального движения соответствует некоторое линейное расстояние, которое было бы описано за некоторое данное время, если принять, что движение на протяжении всего этого времени происходит именно с этой степенью скорости» {156, 245]. Последнее определение Суайнсхеда, равно как и цитированное выше аналогичное определение Хейтсбери, уже не будут, при всем их отличии от собственно интенсивного аспекта понятия мгновенной скорости, казаться отделенными от него непроходимой пропастью; напротив, обе трактовки предстанут как внутренне взаимосвязанные моменты одного общего определения. Действительно, в обоих экстенсивных определениях о расстоянии говорится в сослагательном наклонении: это не то расстояние, которое действительно проходится телом (или наиболее быстро движущейся точкой тела), а то, которое было бы пройдено, если бы тело двигалось с должной степенью (мгновенной) скорости. Следовательно, расстояния, предшествующего измерению мгновенной скорости, нет, а есть, напротив, мгновенная скорость, на основании которой можно было бы вычислить (хотя и неизвестно, как это сделать) расстояние, которое будет пройдено (или могло бы быть пройдено), если движение будет происходить с такой-то скоростью. Мгновенная скорость является, таким образом, аналогом формальной причины, она гарантирует устойчивость в изменении, т. е. наличие закономерности, придающей «форму» процессу изменения, благодаря чему за определенное время будет пройдено определенное расстояние. Но появление такого «аналога» фактически смещало все акценты в аристотелевском учении о причинах, вступая в непримиримое противоречие с основными тенденциями последнего. Подразумеваемая понятием мгновенной скорости концепция причины отличалась и от динамической причинности физики нового времени. Она выполняла совсем другую функцию — функцию начала, порождающего последовательности временных и пространственных моментов, «отсчитываемых» телом в процессе движения. Конечно, «порождающего» не в смысле современной конструктивной математики, с явным указанием правил, на основании которых осуществляется переход-ют одного члена последовательности к другому. Тем более, что сами мертонцы ни о каких порождающих процедурах не говорили и говорить не могли. Однако «причинный статус» понятия интенсивной скорости, то обстоятельство, что его введение впервые дало возможность представить движение в виде «становящихся последовательностей» моментов времени, точек пути и градусов скорости, определенным образом взаимосвязанных, получают простое и естественное объяснение, если предположить, что исходная «картинка», представлявшаяся уму мертонских калькуляторов, своей расстановкой акцентов сродни интуиции, выразившейся в идее алгоритмического преобразования, осуществляемого шаг за шагом. Интенсивная скорость как бы генерирует последовательности основных параметров движения; поэтому столь важна роль этого понятия в мертонской концепции: оно указывает источник (причину) возникновения последовательностей.
«Порождающая модель» движения, как нам кажется, позволяет лучше ощутить специфику мертонской кинематики; на этом основании при дальнейшем анализе построений схоластов из Мертонколледжа она будет постоянно использоваться нами в качестве «рабочей гипотезы».
4.6. Отображение движения путем конструирования последовательностей
В случае равномерного движения интенсивная скорость, по существу, задает правило, в соответствии с которым будет происходить движение: если тело движется с большим градусом скорости, то оно пройдет за определенный промежуток времени большее расстояние, чем при движении с меньшим градусом; расстояния, проходимые за равные промежутки времени при движении с равной скоростью, будут равны. Интенсивная скорость, таким образом, является «генератором», работа которого складывается из дискретных «шагов»; эти «шаги» порождают сразу две последовательности: равных промежутков времени и равных отрезков пути. Обращение к «порождающей модели» поможет, мы надеемся, понять, как интенсивной величине скорости может быть сопоставлена экстенсивная величина расстояния (сопоставление, составляющее нерв определений Хейтсбери и Суайнсхеда), не сводя понятие скорости к отношению неподобных величин. Оба смысловых оттенка, содержащихся в понятии мгновенной (или интенсивной) скорости, окажутся равно необходимыми, если интерпретировать движение по аналогии с конструированием последовательностей. Все трансформации, внесенные мертонцами в аристотелевское учение о движении, были в конечном счете направлены на достижение именно этой цели: схватить движение (res successiva) путем конструирования разнообразных последовательностей.
Что касается равноускоренного движения, то его развернутая интерпретация в терминах порождения будет дана в ходе дальнейшего изложения. Здесь мы ограничимся несколькими замечаниями общего характера.
Как явствует из цитированного выше отрывка из трактата «De motu», если при равномерном (униформном) движении «скорость оценивается по максимальной линии, которую описывает точка», то величине intensio motus, характеризующей равноускоренное (униформно-дифформное) движение, также соответствует экстенсивная величина — широта (latitudo) движения. Ускорение в кинематике мертонцев — это не просто изменение скорости, т. е. чисто экстенсивная величина, измеряемая «расстоянием» между высшим и низшим градусом широты (их разностью); изменение скорости мыслится ими как движение по возрастающей или убывающей шкале градусов, совпадающей с максимальной широтой движения, т. е. как движение, происходящее с определенной скоростью. Intensio motus в случае равноускоренного движения является не чем иным, как скоростью пересчета градусов, заключенных между первым и конечным градусами всей широты. Уяснив это обстоятельство, мы легко теперь поймем, почему «в интенсии движения скорость оценивается по максимальной широте движения, приобретаемой в то или иное время».
В контексте анализа равноускоренного движения intensio motus рассматривается мертонцами, по сути дела, как интенсивная величина второго порядка, по отношению к которой широта движения, составленная из градусов скорости (интенсивных величин первого порядка) играет роль экстенсивной (производной от движения) величины: «генератор» (intensio motus) через равные промежутки времени, соответствующие продолжительности элементарного «Шага», отсчитывает градусы, возрастающие (или убывающие) в одинаковой пропорции. Каждой интенсивной величине первого порядка может быть сопоставлена некоторая абсолютно экстенсивная величина — путь, проходимый телом в равномерном движении с данным градусом широты. Мертонцы не умели вычислять этот путь для любого, произвольно взятого градуса. Единственный из всех градусов, характеризующих равноускоренное движение, которому они нашли способ сопоставить его экстенсивную меру, — это средний градус широты. Немного ниже будет подробно изложено, как они это сделали. Здесь же для нас важно подчеркнуть, что путем введения (неявной) иерархии интенсивных величин, выполняющих функцию «генераторов», мертонцы «выводят» сначала последовательности градусов, составляющих ту или иную широту движения, а затем последовательности отрезков пути, проходимых при равномерном движении, «раскладывая» тем самым движение по «порождающей модели».
Эта модель позволяет объяснить еще один важный пункт в учении мертонской школы о движении. И в античности, и в средние века доминировало определение равноускоренного движения, согласно которому возрастание величины скорости (или быстроты и медленности) в такого рода движении происходит прямо пропорционально проходимому расстоянию. Такого мнения придерживались Стратои, Александр Афродизийский, Симпликий, Альберт Саксонский, Марсилий Ингенский, а также (в своих ранних работах) и Галилей. Гораздо более плодотворной оказалась концепция, развитая в Мертон-колледже, в соответствии с которой отсчет градусов скорости велся по шкале времени. Историки физики согласны в том, что введениие временной шкалы для определения скорости в равноускоренном движении дало мощный толчок развитию кинематики, явившись одной из главных предпосылок создания математической концепции движения. Но мы не найдем у них ответа па вопрос, что побудило мертонцев отказаться от традиционного представления; переход к временной шкале оказывается ничем не обоснованным, результатом счастливого стечения обстоятельств. Но если допустить, что главной рабочей интуицией мертонцев, хотя и не высказанной ими в явной форме и, по-видимому, даже осознаваемой ими далеко не во всех деталях, является интуиция движения как процесса, состоящего в развертывании бесчисленного множества последовательностей, то станет очевидным, что они просто не могли иначе определить шкалу скоростей, характеризующих равноускоренное движение. Ибо если последовательность скоростей есть результат наличия intensio motus, т. е. начала, порождающего эту последовательность, то такое порождение может иметь место только во времени, которое составляет его необходимую предпосылку.
4.7. Мертонская теорема о среднем градусе скорости
Главным результатом математических вычислений, проводившихся в Мертон-колледже, были формулировка и доказательство фундаментальной кинематической теоремы, которая приравнивает (в отношении пути, пройденного за определенный отрезок времени) равноускоренное движение равномерному, скорость которого равна скорости равноускоренного движения в средний момент времени последнего. В современной символической записи мертонская теорема средней скорости будет выглядеть следующим образом:
1) S = ½ ∙ Vf ∙ t — для случая ускорения от состояния покоя;
2) S = (v0 + (vf – v0)/2)/t — для ускорения от начальной скорости v0.
где S обозначает проходимое расстояние, vf — конечную скорость, a t — время ускорения.
Рассмотрим вначале доказательство Суайнсхеда, а затем доказательство Хейтсбери.
а) Доказательство Ричарда Суайнсхеда
Выше приводилось одно из мертонских доказательств теоремы о среднем градусе, принадлежащее Суайнсхеду. Доказательству в трактате Суайнсхеда предпосланы формулировка и разъяснение самой теоремы: «Всякая широта движения, равномерно приобретаемая или утрачиваемая, соответствует своему среднему градусу… Я говорю, что широта, которая приобретается, соответствует своему среднему градусу в том смысле, что ровно столько же будет пройдено посредством той широты, таким именно образом приобретаемой, сколько и посредством ее среднего градуса, если в продолжение всего (totum) времени движение будет происходить с тем средним градусом»[89]. Чтобы доказать это утверждение, Суайнсхед предлагает проделать мысленный эксперимент (излагая его рассуждение, мы постараемся воспроизвести основную идею, не следуя буквально способам ее выражения). Предположим, что тело x движется равноускоренно в течение времени txи за это время его скорость возрастает от b до а градусов. Приращение скорости от b до а есть не что иное, как широта движения х. Пусть точно такая же широта движения «равномерно утрачивается» при равнозамедленном движении тела у за время ty (tx = ty). При этом предполагается, что движение у происходит с ускорением, равным (по абсолютной величине) ускорению x (точнее, Суайнсхед говорит не об ускорении, а о том, что а уменьшается и b возрастает при движении у и x равно быстро (equevelociter)). Последнее предположение реализуется в мысленном эксперименте в виде дополнительных требований, налагаемых на движение x и y: 1) x и y начинают двигаться одновременно;
2) «сколько одно (x) приобретает, столько другое (y) утрачивает». Если эксплицировать пункты, выполнение которых подразумевается краткой формулировкой второго требования, то они состоят в следующем. Пусть движение х, у начинается в момент времени t0, a U обозначает произвольный момент времени их движения. В момент ti x будет иметь скорость bi (bi> b), а у — скорость ai (ai< a). Тогда в соответствии со вторым требованием bi—b = a—ai.
Если с = (a – b)/2, т. е. является средним градусом широты, то x и y достигнут с одновременно, так что x и y будут иметь одинаковую скорость с в момент tk (tk = (ti – t0)/2), где ti — момент окончания движения х, у. Точнее, если обозначить через
скорости x, y в момент времени tn, то
Отсюда
Но и для произвольного момента времени
так как второе требование равносильно утверждению, что сумма скоростей x и y остается постоянной на протяжении всего движения.
Доказательством
завершается, по существу, все доказательство теоремы у Суайнсхеда. Вывод о равенстве расстояний, проходимых при равноускоренном и равномерном движении со скоростью, равной среднему градусу широты первого, он считает столь очевидным, что предоставляет его сделать читателю. Действительно, из постоянства суммы скоростей Vtix и Vtiy следует, что два равноускоренных движения, в результате которых проходится расстояние S = Sx + Sy (Sx, Sy — расстояния, проходимые соответственно x и y), эквивалентны в отношении пройденного расстояния равномерному движению со скоростью V = 2c, продолжающемуся в течение того же времени. Поскольку Sx = Sy,то Sx будет пройдено за то же время при равномерном движении со скоростью с.
Быть может, самое любопытное в доказательстве Суайнсхеда — это то, что оно только отчасти является доказательством, а в гораздо большей степени — определением. Когда Суайнсхед указывает, что оба равноускоренных движения уменьшаются и возрастают равно быстро (equevelociter), то он считает возможным отсюда заключить, что «сколько одно приобретает, столько другое утрачивает». В действительности же только последнее уточнение придает утверждению о «равной быстроте» требуемую определенность. Суайнсхед считает необходимым как-то обосновать тот факт, что x и у одновременно достигнут среднего градуса с, что с не просто является полусуммой двух градусов a и b, но и расположено равно посередине, т. е. на равном удалении от а и b. В этом обосновании и состоит главная цель доказательства. Оно начинается с утверждения, что «все, составленное из двух неравных, является двойным по отношению к среднему между ними». В данном утверждении легко рассмотреть определение среднеарифметического, известное еще пифагорейцам, которые умели строить арифметические прогрессии, где каждый член является полусуммой двух соседних и одновременно отличается от них на одну и ту же величину (разность прогрессии). Суайнсхед, безусловно, все это знал и все же принимается снова доказывать, казалось бы, то же самое утверждение. Зачем? Ответ очевиден: он хотел математическое положение, касающееся чисел, представить в виде следствия кинематической теоремы. Его не удовлетворяет традиционное представление, поскольку в нем четко не разделяются два смысла, равно присущие термину «средний». Число l является «средним» (арифметическим) двух чисел k и m, если l, k, m рассматриваются, говоря современным языком, как конечные множества, сравниваемые между собой по количеству элементов, т. е. с точки зрения их мощности. Поэтому оно может быть названо «средним» в количественном смысле, поскольку l = (k + M)/2 означает, что l содержит вдвое меньше единиц, чем (k+m). С другой стороны, l можно получить из k и m, прибавляя или отнимая одно и то же число п. В этом случае l указывает границу двух элементарных шагов, с помощью которых можно перейти от k к т (или от т к k): двухкратным прибавлением п к k (соответственно двухкратным вычитанием п из т). Число l как граница двух элементарных шагов может быть названо «средним» без какой-либо апелляции к количеству единиц, содержащихся в нем, независимо даже от того, представимо ли вообще оно в виде множества, — оно будет средним в порядке порождения, поскольку занимает среднее положение в порождаемой последовательности. Очевидно, что «среднее» по количеству и «среднее» по порядку, имея различные, причем независимые определения, совсем необязательно должны совпадать, точно так же, как количественные и порядковые характеристики вообще.
Движение, понятое как порождающий процесс, связывает в момент своей реализации оба вида величин воедино, или, если угодно, наоборот: интерпретация движения в виде процесса порождения заставляет ввести конструкцию, совмещающую в себе черты количественных и порядковых величин. Одной из самых смелых и глубоких интуиции мертонской школы было как раз открытие этой связи, и большое доказательство Суайнсхеда демонстрирует механизм, обеспечивающий совпадение среднеарифметического (a + b)/2 = c средним (в плане временной последовательности) положением с по отношению к а и b. Суайнсхед, как отмечалось, считал, что ему удалось доказать такое совпадение, показав, что оно является простым следствием равноускоренного движения. В мертонском определении равноускоренного движения не содержится ничего другого, кроме утверждения факта совпадения соотношений, характеризующих ряды количественных и порядковых величин. Равным приращениям времени сопоставляются равные приращения скорости, или в другой формулировке: если все время движения разделить на части, уменьшающиеся в непрерывной пропорции, то отношение скоростей на концах полученных временных отрезков будет описываться той же самой непрерывной пропорцией. Иначе говоря, указанное совпадение является синонимом равноускоренного движения, его нельзя ни вывести, ни доказать; его можно было только открыть.
б) Доказательство Уильяма Хейтсбери
В более раннем доказательстве теоремы о среднем градусе, принадлежащем Хейтсбери, разъяснению основных пунктов этого открытия посвящена значительная часть текста, причем у Хейтсбери еще более ясно, чем у Суайнсхеда, выражено стремление доказать эти пункты.
Например, выдвигается ряд аргументов с целью обосновать положение, что «для всякой широты, начинающейся от покоя и заканчивающейся на некотором конечном градусе, средний градус есть точно половина того градуса, которым заканчивается эта широта» [103, 278]. Констатация совпадения среднего «по количеству» и среднего «по порядку» составляет нерв доказательства Хейтсбери, он понимает всю значимость этого факта и хочет его удостоверить с помощью следующего рассуждения. Широта движения состоит из бесконечного числа градусов от 0 до п. В этом континууме можно выделить дискретную последовательность градусов, начинающуюся с n, в которой каждый последующий градус относится к предыдущему, как 2:1, так что градусы, входящие в последовательность, убывают в непрерывной пропорции. Для любой непрерывной пропорции из трех терминов справедливо утверждение, что «каково отношение первого ко второму, или второго к третьему, таково будет и отношение разницы между первым и средним к разнице между средним и третьим» [103, 278—279]. В случае бесконечной пропорции между разностями величин соседних градусов будет такое соотношение: «какова будет разница, такова будет и сумма (aggregatum) всех разниц между последующими терминами» [103, 279]. В подтверждение он ссылается на аналогичное соотношение, имеющее силу для конечных непрерывных пропорций: «какова первая пропорциональная часть любой конечной величины, такова же точно и сумма всех отдельных пропорциональных частей ее» [там же]. Поскольку второй градус в выбранной Хейтсбери бесконечной непрерывной пропорции вдвое меньше первого, а «разность или широта между первым и вторым… будет равна широте, составленной из всех разностей или широт между остальными градусами, т. е. теми, которые следуют за двумя первыми» [там же], то Хейтсбери считает установленным, что средний (в смысле среднеарифметического) градус широты является средним и в другом отношении: он находится на равном расстоянии от крайних градусов широты, т. е. может быть получен из первого вычитанием точно такой же величины, как и неградус из него; иначе говоря, он средний по отношению к процессу преобразования. Вот как этот вывод звучит в изложении Хейтсбери: «Следовательно, совершенно одинаково (equaliter precise) и на равную широту отстоит тот второй градус, относящийся к первому как половина к своему двойному, от того двойного, как этот второй отстоит от не-градуса или от противоположного края данной величины» [103, 279—280].
Доказательство Хейтсбери позволяет уточнить смысл, вкладываемый мертонскими кинематиками в понятие «широты движения» (latitudo motu). Широта — это прежде всего разность между любыми двумя неравными градусами скорости; рассматриваемая с этой точки зрения, она эквивалентна понятию приращения скорости в физике нового времени и именно так обычно и переводят латинский термин latitudo motu историки науки (например, Муди, Кладжет, Грант). В цитированных нами фрагментах доказательства Хейтсбери речь все время шла о широте в смысле разности градусов; Хейтсбери показывает, что средний градус широты (определенный через операцию вычитания) «есть точная половина того градуса, которым она оканчивается» [103, 280], если широта начинается с не-градуса. Как мы выяснили, ближайшей целью доказательства Хейтсбери является сопоставление двух способов вычисления среднего градуса: первого — количественного, когда суммируются два градуса (начальный и конечный) и полученный результат делится пополам, и второго — «порядкового», когда значение среднего градуса отыскивается с помощью операций, применяемых всякий раз к одному из градусов. Первый способ требует одновременного рассмотрения начального и конечного градуса, которые вследствие этого предстают как актуально данные количества (поэтому мы и назвали его «количественным»); второй состоит в применении одной и той же операции к последовательно получаемым величинам. И тот и другой приводят к одинаковому результату; их различие заключается лишь в методах получения этого результата. Рассуждение Хейтсбери, таким образом, движется пока в чисто математической плоскости, фиксируя и различие и сходство двух алгоритмов вычисления величин среднего градуса. Но затем оно получает физическую интерпретацию, которая придает предшествующей математической аргументации новый смысловой оттенок.
Когда Хейтсбери переходит к главному пункту доказательства, касающемуся расстояния, проходимого при равномерном движении, он не дает никаких дополнительных пояснений понятию среднего градуса, считая, по-видимому, что сказанного прежде вполне достаточно. Его целью является обоснование двух утверждений: 1. «Если движение равномерно приобретает некую широту, начинающуюся от не-градуса и оканчивающуюся некоторым конечным градусом», то «все это движение или все это приобретение (tota alia aquisitio) будет соответствовать своему среднему градусу» [103, 280]. Такое же соответствие будет и в случае, когда приобретаемая широта движения начинается от некоторого градуса. И 2. «Когда равномерно производится некая интенсификация движения от не-градуса до некоторого градуса, то в первую половину времени будет пройдено точно треть того, что будет пройдено во вторую половину. И если, напротив, равномерно производится ослабление (remissio) от того же градуса или от какого бы то ни было другого до не-градуса, то в первую половину времени будет пройдено точно в три раза большее расстояние, чем то, что будет пройдено во вторую половину времени» [там же]. По ходу доказательств этих утверждений вдруг выясняется, что средний градус широты совпадает с градусом скорости, наличным в «средний момент времени» [103, 281] движения. Оказывается, когда выше речь шла о разностях различных градусов скорости, т. е. об операциях вычитания, то вычитаемое в них следовало понимать не только как величину, которую надо отнять, чтобы из большего градуса получить меньший. Эта величина, по замыслу Хейтсбери, является неотделимой от «расстояния» между двумя градусами, выполняющими функции уменьшаемого и разности, а само «расстояние» совпадает с длительностью временного интервала, разделяющего указанные градусы.
4.8. Формирование идей функциональной зависимости и переменной величины
В понятии «широта движения» совмещаются, таким образом, два аспекта: с одной стороны, моделируемый математической операцией вычитания, а с другой — схватываемый в понятии времени. Современный физик или математик сказали бы, что такое совмещение достигается благодаря соответствию, фактически устанавливаемому Хейтсбери между двумя множествами: множеством градусов скорости и множеством моментов времени. Но Хейтсбери этого не говорит, и не только потому, что идея такого соответствия, т. е. идея функциональной зависимости, только-только начинала формироваться. Сама исходная интуиция, лежащая в основе его доказательства, была другой. Хейтсбери, так же как и Суайнсхед, устанавливает закономерности, присущие равноускоренному движению, не путем ретроспективного анализа его особенностей, когда само движение уже прекратилось, а моделируя процесс его протекания. Равномерное движение для него — это движение, широта которого «приобретается или утрачивается» равномерно; только при таком взгляде на движение тела могла возникнуть необходимость в определении не всего времени его движения, а последовательности временных отрезков, из которых складывается время целого движения, а также возрастающей и убывающей последовательности градусов. Апелляция к движению не как к предмету изучения, а как к средству доказательства, позволяющему «пересчитать» все градусы скорости (эта конструктивно-доказательная функция движения особенно заметна в теореме Суайнсхеда, но без нее распались бы и все рассуждения Хейтсбери), не должна, по-видимому, расцениваться только как свидетельство недостаточной зрелости математической мысли (как известно, при установлении различного рода соответствий и функциональных зависимостей, согласно представлениям современной математики, нет необходимости привлекать понятие движения). Она заслуживает более серьезного отношения, поскольку в ней отразились моменты, существенные, на наш взгляд, для понимания не только генезиса идеи функциональной зависимости, но и самой проблемы.
Первое отличие «кинематической» трактовки проблемы функциональной зависимости от «математической» (подразумевая под последней прежде всего теоретико-множественное понятие функции, а также и другие формулировки, которые обходятся без какого бы то ни было упоминания о движении) очевидно: так как до окончания движения нет ни множества всех градусов широты, ни множества всех моментов времени движения, то нельзя говорить о соответствии между элементами этих множеств, ведь всякое соответствие предполагает предварительное наличие сущностей, между которыми оно устанавливается. Если же в последовательности градусов всякий следующий градус скорости достигается лишь по истечении определенного промежутка времени, то и самого градуса, и момента времени, соответствующего ему, нет, пока они оба не возникнут, причем изначально соотнесенные между собой, т. е. возникнут одновременно с их «соответствием». Ни градусы, ни время не будут играть роль независимых переменных — независимым, первичным, будет процесс движения (или его модель — работа «генератора»), а они будут производными величинами. Точнее, даже не величинами, ибо понятие «величина» обычно ассоциируется только с количественной величиной, т. е. с величиной, сопоставляемой и сравниваемой с другими величинами, сосуществующей с ними, имеющей, как и они, актуальное (вневременное) существование. Если их и называть величинами, то с прибавлением эпитета «порядковые», указывающего, что они, по своему исходному определению, не подлежат ни сравнению, ни сопоставлению; единственная их характеристика состоит в последовательности, в которой они получаются в процессе движения. Порядок, в котором они порождаются, задает изначальное соотнесение двух рядов величин; для обозначения такого соотнесения не нужно привлекать, помимо величин и их порядка (точнее, помимо «порядковых» величин), никакой особой сущности, подразумеваемой понятием «соответствия». Неприкрыто кинематическое введение согласованного развертывания двух рядов величин в работах мертонцев, т. е. создание ими кинематической концепции функциональной зависимости при всех ее недостатках, разделяемых ею со всеми первоначальными, прорисованными далеко не во всех деталях, формулировками новых идей, помогает, с одной стороны, понять истоки господствующей в современной математике «статичной» концепции, а с другой стороны, указывает на возможность альтернативного подхода к интерпретации понятия функциональной зависимости.
Приступая к изложению взглядов мертонских «калькуляторов», мы выдвинули утверждение о том, что ядром инноваций, внесенных ими в учение о движении, является изменение понятия величины. Это утверждение было рабочей гипотезой, определившей способ организации материала и угол зрения на проблему. Все затронутые в данной главе темы прямо или косвенно касались этого пункта. Теперь нам остается подвести итог анализу трансформаций, которым подверглось в работах мертонцев понятие величины.
Главным моментом, подготовившим почву для трансформаций, было соединение двух понятий: широты движения и величины. Когда Хейтсбери стремился показать, что средний градус широты будет средним не только «количественно», но и в смысле одинакового «расстояния», отделяющего его от крайних градусов, то он ссылался в качестве аргумента на тот факт, что «всякая широта есть некое количество, и поскольку вообще во всяком количестве середина равно отстоит от краев, так и средний градус любой конечной широты равно отстоит от двух краев, будут ли эти два края градусами, или один из них будет некоторым градусом, а другой — отсутствием всего, или не-градусом» [103, 279]. Но мертонцы не ограничились утверждением, что широта есть количество, т. е. величина. В их трудах мы находим более радикальную формулировку: «Любая величина есть широта от не-градуса до нее самой» [155, 158]. Она, пожалуй, лучше всего выражает суть концепции величины, развитой в Мертонколледже.
Поскольку широта мыслилась мертонцами состоящей из градусов, и в равноускоренном движении происходил пересчет всех градусов, предшествовавших максимальному, начиная с не-градуса (или некоторого минимального градуса широты), то максимальный градус оказывался не просто количественной «величиной», которую можно сопоставлять с любыми аналогичными величинами, но последним в «непрерывном ряду» градусов.
Что собой представляет такой «непрерывный ряд», уже говорилось. Теперь, проанализировав доказательства «кинематических теорем», мы можем понять и как он «конструировался» (имея в виду фактическую конструкцию, вырисовывающуюся из трудов мертонцев, а не их прямые высказывания). Понятие равноускоренного движения определялось мертонцами в два этапа. Сначала указывался порождающий процесс, состоящий в равных приращениях скорости за равные промежутки времени. Приращения скорости и промежутки времени определялись путем деления конечной широты, приобретаемой за конечное время, на равные части. Максимальный градус был поэтому конечным результатом некоторого дискретного преобразования, порождающего процесса. Затем предполагалось, что он будет конечным пунктом развертывания и других последовательностей — результатов иных способов членения данной широты. Предполагалось, иными словами, что максимальный градус является результатом развертывания бесконечного числа дискретных последовательностей, или, если представить все эти последовательности порождаемыми одним и тем же «генератором», результатом «непрерывного» процесса порождения. Будучи таковым, он оказывался, во-первых, «порядковой» величиной, а, во-вторых, даже не величиной, а одним из моментов «непрерывного» ряда градусов, который только весь целиком мог бы быть назван величиной, а именно переменной величиной, поскольку процесс движения моделировался изменением значений градусов скорости,
Мертонские исследователи не разработали адекватной символики, которая дала бы им возможность ясно сформулировать понятие переменной величины. Эта символика появилась позднее в работах математика XVI в. Виета. Но представляется справедливым мнение А. П. Юшкевича, что «нельзя не оценить высоко проницательность людей, которые в XIV в. высказали, хотя бы и в нечеткой схоластической форме, несколько руководящих мыслей новой математики переменных величин» [67, 202—203].
Следует, однако, заметить, что первоначальные формулировки идей — это не просто несовершенные образы более поздних разработок. Нередко в них заключены потенции к развитию исходной идеи в нескольких направлениях. Так обстоит дело и с концепцией величины, вырисовывающейся из работ мертонской школы. Мы попытались показать, что новая концепция величины формируется на фоне явно не высказанной, но подразумеваемой идеи развертывания (порождения) последовательностей. Понятие интенсивной скорости, да 'и сам факт обращения к проблеме движения, не просто стимулировали введение новых математических понятий, которые сами по себе могли быть поняты и объяснены без апелляции к какой-либо модели движения. Мертонцам удалось высказать ряд «руководящих мыслей», касающихся идеи функциональной зависимости и переменной величины именно потому, что они впервые начали разрабатывать концептуальный аналог движения — его «порождающую модель». Трудности, которые подстерегали исследователей на этом пути, прежде всего связанные с необходимостью оперировать с непрерывными величинами, заставили математиков последующих столетий выбрать другой путь, который привел к исчислению бесконечно малых. Математика непрерывного отделилась от конструктивной математики, обратившись к понятиям, в определении которых существенную роль играла идея актуальной бесконечности, т. е. к понятиям, которые в принципе не поддавались интерпретации в терминах дискретных последовательностей. Мертонские «калькуляторы» (с этим согласно большинство историков науки) предвосхитили ряд основополагающих идей математики непрерывного, но в их работах содержится и нечто другое: попытка (пусть очень неуверенная) найти, так сказать, «конструктивный» подход к решению проблемы непрерывности. Хотя их усилия в этом направлении не были продолжены последующими поколениями математиков, примечателен сам факт существования в истории науки такой концепции, которая не предполагала, в случае ее успешного развития, принципиального разрыва между конструктивными и неконструктивными методами, разрыва, наблюдаемого в настоящее время в математике. С этой точки зрения идеи, высказанные в рамках учения об интенсии и ремиссии качеств, представляют не только историко-научный интерес.