рибной мицелий, или грибницу.
заново построить отношения: у некоторых лишайников образуются специализированные рассеивающие структуры, называемые соредиями, которые состоят из грибковых и водорослевых клеток. В некоторых случаях только что проросший лишайниковый грибок может войти в партнерство с каким-нибудь фикобионтом, который не совсем удовлетворяет его потребности и сохраняется как маленький «фотосинтетический комок», или предслоевище, пока не образуется настоящее слоевище (Goward [2009c]). Некоторые лишайники могут разделяться на составляющие и вновь собираться, не образуя спор. Если определенные виды лишайника поместить в чашку Петри и создать нужные условия питания, партнеры разъединятся и расползутся в стороны. После разделения они могут воссоздать свои партнерские отношения (хотя обычно и не в лучшей форме). В этом смысле лишайники обратимы, или реверсивны. По крайней мере, в некоторых случаях мед можно отделить от каши. До сих пор, однако, только в случае с единственным лишайником – Endocarpon pusillum – удалось разделить партнеров, вырастить их отдельно друг от друга и воссоединить опять, пройдя все стадии формирования и развития лишайника, включая и производство вполне функциональных спор – процесс, известный как повторный синтез “от споры до споры”» (Ahmadjian and Heikkilä [1970]).
«…самих лишайников вы не видите»: симбиотическая природа лишайников вызывает несколько любопытных технических проблем. Лишайники уже давно стали маленьким кошмаром для таксономистов и классификаторов. Так сложилось, что лишайникам дают названия по именам их грибных партнеров. К примеру, лишайник, возникающий из взаимодействия грибка Xanthoria parietina (ксантория настенная) и водоросли Trebouxia irregularis (требуксия нерегулярная), известен как Xanthoria parietina. Подобным же образом сочетание гриба Xanthoria parietina и водоросли Trebouxia arboricola (требуксия древовидная) тоже известно под названием ксантория настенная (Xanthoria parietina). Названия лишайников – синекдохи в том смысле, что они обозначают целое названием части (Spribille [2018]). Существующая в настоящее время система подразумевает, что грибковый компонент лишайника и есть сам лишайник. Но это в корне неверно. Лишайники возникают из договоренностей, достигнутых между несколькими партнерами. «Воспринимать лишайник как гриб, – сетует Goward, – значит не увидеть лишайника вообще» (Goward [2009c]). Это как если бы химики называли любое содержащее углерод соединение – от алмазов до метана и метамфетамина – углеродом. Пришлось бы, вероятно, признать, что они кое-что упускают из виду. Это не просто ворчание на тему семантики. Дать чему-то название – значит признать его существование. Когда обнаруживают новый вид, его описывают и дают ему название. А у лишайников действительно есть свои имена, множество имен. Лихенологи не практикуют аскетизм при классификации видов. Просто единственные имена, которые они могут использовать, отскакивают, не задевая его, от явления, которое они стремятся описать. Это структурный вопрос. Биология опирается на систему классификации, или таксономическую систему, которая никоим образом не может признать симбиотического статуса лишайников. Они буквально безымянные.
миры, уменьшенные в размерах: Sancho et al. (2008).
после регидратации через 30 дней: de la Torre Noetzel et al. (2018).
метаболическое наследие этих отношений: об уникальных соединениях в лишайниках и их использовании человеком см.: Shukla et al. (2010) и в публикации State of the World’s Fungi (2018); о метаболическом наследии лишайниковых отношений см.: Lutzoni et al. (2001).
уже тысячи лет: сообщения о находках ученых из Глубинной углеродной обсерватории можно прочитать у Watts (2018).
уже более 9000 лет: о лишайниках в пустыне см.: Lalley and Viles (2005) и “State of the World’s Fungi” (2018); о лишайниках внутри камней см.: de los Ríos et al. (2005) и Burford et al. (2003); о Сухих долинах Мак-Мердо (бесснежных долинах антарктических оазисов) см.: Sancho et al. (2008); о жидком азоте см.: Oukarroum et al. (2017); о долголетии лишайников см.: Goward (1995).
более подходящие для межпланетных путешествий: Sancho et al. (2008).
никаких абсолютно живых клеток: об ударе при выбросе с планеты см.: Sancho et al. (2008), Cockell (2008). В ряде исследований было доказано, что бактерии более устойчивы к воздействию высокими температурами и ударным давлением, чем лишайники. О повторном вхождении в атмосферу см.: Sancho et al. (2008).
вопрос остается открытым: Sancho et al. (2008) и Lee et al. (2017).
в зависимости от обстоятельств: о происхождении лишайников см.: Lutzoni et al. (2018) и Honegger et al. (2012). Идет очень много споров по поводу идентификации древних лишайникоподобных окаменелостей и их принадлежности к сохранившимся разновидностям лишайников. Были обнаружены подобные лишайникам морские организмы, которым уже 600 миллионов лет (Yuan et al. [2005]), и некоторые ученые утверждают, что эти морские лишайники сыграли роль в миграции предков лишайников на сушу (Lipnicki [2015]). О многократном эволюционном развитии лишайников и повторной лихенизации см.: Goward (2009c); о делихенизации см.: Goward (2010); о дополнительной лихенизации см.: Selosse et al. (2018).
в обществе друг друга: Hom and Murray (2014).
симбиотического образа жизни: о «песне, а не певце» см.: Doolittle and Booth (2017).
вполне могли бы быть другими планетами: Hydropunctaria Maura («полночь в брызгах воды») была раньше известна как Verrucaria maura («пупырчатая полночь»). Информацию о долгосрочном изучении зарождения лишайников на только что появившемся острове читайте в истории острова Сюртсей: www.anbg.gov.au/lichen/case-studies/surtsey.html [дата обращения 29 октября 2019].
не только существительное, но и глагол: о «едином целом» и «наборе составляющих частей» см.: Goward (2009a).
столетия пристального наблюдения: Spribille et al. (2016).
«одного гриба и одной водоросли»: о грибном разнообразии внутри лишайников см.: Arnold et al. (2009); о дополнительных партнерах волчьего лишайника см.: Tuovinen et al. (2019), Jenkins and Richards (2019).
что представляют собой живые организмы: по пoводу «Неважно, как вы их назовете» см.: Hillman (2018). Goward сформулировал определение лишайников, которое учитывает эти недавние изыскания: «Долговечный физический побочный продукт лихенизации, определяемый как процесс, посредством которого система, состоящая из любого числа грибных, водорослевых и бактериальных таксонов, создает таллус [одно, общее на всех, тело лишайника], рассматриваемый как только что возникшая собственность всех его составляющих» (Goward 2009b).
сгусток в лабораторной чашке: о лишайниках как о резервуарах микробов см.: Grube et al. (2015), Aschenbrenner et al. (2016) и Cernava et al. (2019).
«нам сложно соотнести себя с ними»: о теории странности/нетрадиционности, предложенной для лишайников, см.: Griffiths (2015).
Или, вернее, всех вас: См.: Gilbert et al. (2012) для более подробной информации о том, как микроорганизмы вносят сумятицу в самые разные определения биологической индивидуальности. Дальнейшую информацию о микробах и иммунитете можно найти у McFall-Ngai (2007) и в работе Lee and Mazmanian (2010). Некоторые ученые предлагают альтернативные определения биологических индивидов на основе «общей судьбы» жизненной системы. Например, Frédéric Bouchard предлагает следующую формулировку: «Биологический индивид – это функционально интегрированная сущность, чья интеграция связана общей судьбой с системой, когда окружающая их среда подвергает их жесткому отбору» 2018).
что они действительно существуют: Gordon et al. (2013); Bordenstein and Theis (2015).
полны трениями и конфликтами: об инфекциях, вызываемых кишечными бактериями, см.: Van Tyne et al. (2019).
«Мы все лишайники»: Gilbert et al. (2012).
Глава 4. МИЦЕЛИЕВОЕ СОЗНАНИЕ
и мне отвечают: Maria Sabina, из записи, сделанной Gordon Wasson и процитированной в работе Schultes et al. (2001), p. 156.
границ своего Я: краткое резюме клинических исследований психоделиков см.: Winkelman (2017); расширенную информацию и подробности ищите у Pollan (2018).
действующие как растяжки на войне: Hughes et al. (2016).
на главной жилке: о высоте, на которой совершается смертельный захват, и о времени, когда это происходит, см.: Hughes et al. (2011) и у Hughes (2013); об ориентировании грибом насекомых см.: Chung et al. (2017). Существует много разновидностей кордицепса (Ophiocordyceps) и муравьев-древоточцев, но каждая из разновидностей муравьев-древоточцев становится жертвой только одной разновидности кордицепса, и каждая разновидность гриба может контролировать только одну разновидность муравьев-древоточцев (de Bekker et al. [2014]). В своем определении места смерти различные грибо-муравьиные пары крайне разборчивы. Некоторые грибы заставляют своих насекомых-аватаров впиваться своим предсмертным укусом в сучья, другие – в кору, а третьи – в листья (Andersen et al. [2009] и Chung et al. [2017]).
над поведением муравьев: о соотношении массы гриба в биомассе муравьиного тела см.: Mangold et al. (2019); визуализацию грибницы внутри муравьиных тел см.: Fredericksen et al.
управлении поведением муравьев: гипотезу о том, что грибы манипулируют поведением муравьев при помощи определенных химических веществ, см.: Fredericksen et al. (2017); о химических соединениях, вырабатываемых кордицепсом (Ophiocordyceps), см.: de Bekker et al. (2014); о кордицепсе и алкалоидах спорыньи (Ophiocordyceps and ergot alkaloids) читайте работу Mangold et al. (2019).
сознание, которым можно было управлять: