заметил он с нежностью: о саркодесе, или снежном цветке, см.: Muir (1912), ch. 8; про «тысячи невидимых струн» см.: Wulf (2015), ch. 23. Для Мьюра, который также написал о «бесчисленных неразрывных струнах», эта тема повторялась снова и снова. Ему также принадлежит более известная строчка: «Когда мы пытаемся выбрать что-то одно, мы обнаруживаем, что этот объект соединен со всем во Вселенной».
всегда остаются реципиентами: вектор «донор – реципиент» регулирует фотосинтез растений. Когда продукты фотосинтеза накапливаются, скорость фотосинтеза снижается. Микоризные грибные сети ускоряют фотосинтез растений, исполняя роль реципиентов углеродных соединений, таким образом предотвращая накопление продуктов фотосинтеза, что в обычной ситуации замедлило бы этот процесс (Gavito et al. [2019]).
здоровые живые растения – реципиентами: о затенении Симард саженцев ели см.: Simard et al. (1997); об умирающих растениях см.: Eason et al. (1991).
в области дефицита: об изменении направления потока углеродных соединений см.: Simard et al. (2015).
будет вскоре вырвано с корнем: обсуждение эволюционной загадки см.: Wilkinson (1998) и Gorzelak et al. (2015).
в затененном подлеске: о перераспределении избытка ресурсов как «общественного достояния» (public good) см.: Walder and van der Heijden (2015). Еще одна возможность заключается в том, что растения-реципиенты дают прибежище многочисленным и разнообразным видам грибов. Растение А может выиграть от сообщества грибов растения В, когда условия изменяются. Разнообразные грибные сообщества служат страховкой против непостоянства и неопределенности окружающей среды (Moeller and Neubert [2016]).
путей передвижения между ними: о родственном/семейном отборе при посредничестве общих микоризных связей см.: Gorzelak (2015), Pickles et al. (2017) и Simard (2018). Ряд видов папоротника используют разновидность родственного отбора, или родительской «заботы», при помощи общих микоризных сетей, и, вероятно, делают это уже миллионы лет (Beerling [2019], pp. 138–40). У этих видов папоротников (в родах Lycopodium, Huperzia, Psilotum, Botrychium, и Ophioglossum) жизненный цикл разделен на две фазы. Споры прорастают и образуют так называемые гаметофиты. Гаметофиты – это маленькие подземные образования, не занимающиеся фотосинтезом. Они находятся там, где должно произойти оплодотворение. Как только оплодотворение произошло, гаметофиты переходят в наземную взрослую форму – спорофитов. Фотосинтез начинается именно в этой фазе. Гаметофиты способны выжить под землей только потому, что они снабжаются углеродом через микоризную сеть, общую со взрослыми спорофитами. Это пример отношений «берите сейчас, платите потом».
между донором и реципиентом: о двунаправленном переносе веществ см.: Lindahl et al. (2001) и Schmieder et al. (2019).
в цифровую утопию: об исследованиях, демонстрирующих преимущества участия растений в общих микоризных сетях, см.: Booth (2004), McGuire (2007), Bingham and Simard (2011) и Simard et al. (2015).
сокращается: об исследованиях, доказывающих отсутствие какого-либо преимущества от участия в общих микоризных сетях, см.: Booth (2004); об увеличении конкуренции общими микоризными сетями см.: Weremijewicz et al. (2016) и Jacobsen and Hammer (2015).
снизив скорость их роста: о «скоростных грибных трассах» и переносе ядовитых веществ по грибным сетям см.: Barto et al. (2011 and 2012), а также Achatz and Rillig (2014).
почти не изучены: о гормонах см.: Pozo et al. (2015); о транспортировке ядер по микоризным грибным сетям см.: Giovannetti et al. (2004 and 2006); о переносе РНК между паразитирующим растением и его хозяином читайте работу Kim et al. (2014); об осуществляемом посредством РНК взаимодействии растений и грибных патогенов см.: Cai et al. (2018).
а другие – за их потребление: об использовании бактериями грибных сетей читайте Otto et al. (2017), Berthold et al. (2016) и Zhang et al. (2018); о влиянии «эндогифовых» бактерий на метаболизм грибов см.: Vannini et al. (2016), Bonfante and Desirò (2017) и Deveau et al. (2018); о разведении бактерий в толстоногом сморчке см.: Pion et al. (2013) и Lohberger et al. (2019).
и их союзницами осами: Babikova et al. (2013).
размышлял Джонсон: о передающейся от томатного растения к томатному растению информации см.: Song and Zeng (2010); о сигналах о стрессе, идущих от ростков Дугласовых пихт к росткам сосны, см.: Song et al. (2015a); о переносе веществ между ростками Дугласовой пихты и сосны см.: Song et al. (2015b).
«как он в действительности посылается»: об электросигнализации у растений см.: Mousavi et al. (2013), Toyota et al. (2018) и комментарии Muday and Brown-Harding (2018); об электрической реакции растений на растительноядность см.: Salvador-Recatalà et al. (2014). Остается много вопросов о химическом общении, которое происходит между корнями растений и грибами, в первую очередь позволяя им завязать отношения друг с другом. Рид однажды попытался вырастить микогетеротрофа, тот самый «пылающий огненный столб» по Мьюиру, и добился кое-какого успеха, прежде чем наткнуться на «каменную стену». «Было увлекательно, – вспоминал Рид, – грибница росла в сторону семени, проявляя огромный интерес и волнение – она вся распушилась и сказала “привет!”. Совершенно очевидно, что происходит обмен сигналами. Грустно то, что у нас никогда не было достаточно больших растений, чтобы позволить процессу развиваться. Вопросы о сигналах останутся вопросами, с которыми придется разбираться уже следующему поколению исследователей».
связаны между собой: Beiler et al. (2009 and 2015). В других работах рассматривалась архитектура общих микоризных сетей, на базе которых происходит взаимодействие видов, однако в них не было четкого описания расположения деревьев внутри экосистемы. Среди этих работ исследования, проведенные Southworth et al. (2005), Toju et al. (2014 and 2016) и Toju and Sato (2018).
это вызовет серьезные нарушения: если произвольно провести линии между деревьями на экспериментальном участке леса Бейлера, то каждое дерево окажется связанным примерно таким же числом линий, что и другие. Деревья, соединенные с другими исключительно многочисленными связями или чрезвычайно малым их числом, будут попадаться крайне редко. Можно было бы подсчитать среднее количество связей для одного дерева, и связи большинства деревьев попали бы в это среднее число. Используя сетевую лексику, эта характерная узловая точка представляла бы собой «масштаб» сети. В действительности мы наблюдаем нечто иное. На экспериментальных ли лесных участках Бейлера, или карте всемирной паутины Барабаши, или в сетке авиамаршрутов, всего несколько узлов с очень большим количеством связей охватывают подавляющее большинство соединений в сети. Узловые точки в такого рода сетях настолько сильно отличаются друг от друга, что не существует такого понятия, как характерная узловая точка, или типичный узел. У сетей отсутствует масштаб, и их описывают как «безмасштабные». Открытие Барабаши в конце 1990-х безмасштабных сетей позволило создать схему для моделирования поведения сложных систем. О различии между узлами с большим числом и малым числом связей см.: Barabási (2014), “The Sixth Link: The 80/20 Rule”; об уязвимости безмасштабных сетей см.: Albert et al. (2000) и Barabási (2001); о безмасштабных сетях в природе см.: Bascompte (2009).
целым рядом видов грибов: о различных типах общих микоризных сетей и контрастах их построения см.: Simard et al. (2012); о слиянии и объединении между различными арбускулярными микоризными сетями см.: Giovannetti et al. (2015). Только потому, что два дерева соединены, нельзя считать, что они соединены одинаково. Некоторые виды ольхи, например, устанавливают связи с очень немногочисленными видами грибов, которые, в свою очередь, обычно не завязывают отношений с другими растениями, кроме ольхи. Это значит, что ольховые деревья имеют тенденцию к изоляции и образуют между собой закрытые, обращенные внутрь себя сети. В плане общей архитектуры изолированного участка леса ольховая роща могла бы рассматриваться как модуль – с обильными внутренними связями, но лишь незначительным числом «каналов», соединяющих с другими модулями (Kennedy et al. [2015]). Эта идея вполне привычна для нас. Набросайте на бумаге сеть своих знакомств. Затем представьте, что каждая связующая линия означает отношения. Сколько из ваших отношений или связей равнозначны? Чем вы расплачиваетесь, когда ставите отношения с сестрой, троюродным кузеном, приятелем с работы и хозяином квартиры, которую вы снимаете, на один уровень в системе вашего социального общения? Ученые, занимающиеся сетевыми системами, Николас Христакис и Джеймс Фаулер описывают степень влияния каждой конкретной связи в социальной сети в плане ее «распространения/заразности». Вас могут связывать социальные отношения и с сестрой, и с квартирным хозяином, но степень влияния, «заразности», каждой из этих связей будет отличаться. Христакис и Фаулер создали теорию о трех степенях влияния, чтобы описать, как снижается социальное воздействие после трех степеней разделения (Christakis and Fowler [2009], ch. 1).
непрекращающемся мерцающем и трепещущем круговом движении: Prigogine and Stengers (1984), ch. 1.
а также чихание и оргазмы: об экосистемах как сложных адаптивных системах читайте работу Levin (2005); о динамическом нелинейном поведении экосистем см.: Hastings et al. (2018).
«кто с кем связан»: о параллелях, проведенных Симард между общими микоризными и нейронными сетями, см.: Simard (2018). Исследователи в других областях разделяют это мнение. Manicka и Levin (2019) утверждают, что методы и техники, до сих пор используемые только для изучения работы головного мозга, следует распространить и на изучение других биологических арен, чтобы преодолеть проблему «тематических бункеров», которые разделяют области биологических изысканий. В неврологии термин «коннектом» обозначает карту нейронных связей. Возможно ли было бы начертить карту микоризного коннектома экосистемы? «Если бы у меня не было ограничений в финансировании, – сказал мне Бейлер, – я бы весь лес к бесу разобрал на образцы. Тогда можно было бы получить очень точную картину сети – кто конкретно связан с кем и