Жар холодных числ и пафос бесстрастной логики — страница 11 из 37

то это — вопрос, относящийся уже не к самой системе, а к ее интерпретации (истолкованию), каковая может быть не единственной.

Станем на путь, обрисованный только что в самых общих чертах, и зададим некоторую формальную систему, идейно примыкающую к алгебре, которую создал Буль. В соответствии с современными представлениями мы будем смотреть на эту систему поначалу как на чисто формальный аппарат, не предполагающий у фигурирующих в нем объектов (знаковых конструкций) какого-либо «внешнего» содержания (использование формального аппарата для вывода «истинных» выражений похоже на игру со знаками, подчиненную определенным правилам). Затем мы дадим четыре интерпретации, в результате которых формально введенные объекты будут наделяться «внешним» по отношению к аппарату смыслом — для каждой интерпретации своим. Далее будет сформулировано понятие булевой алгебры и обнаружится, что в каждой из упомянутых интерпретаций содержится булева алгебра. Обращаем внимание на то, что все это изложение не преследует цели демонстрации реальной картины исторического становления математической логики. Наше изложение существенно осовременено уже потому, что, как мы покажем далее, в «математическом анализе логики» Буля булевой алгебры в собственном смысле этого слова не было, хотя он и стоит у истоков последней.

I. Алфавит. Вводятся в рассмотрение знаки пяти видов: пропозициональные переменные, константы, логические связки (знаки логических операций), знак отношения и скобки.

а) Пропозициональные переменные: A1 A2, A3, ...; число пропозициональных переменных не ограничено.

б) Константы: 0, 1.

в) Логические связки: ~, &, V (эти знаки носят название соответственно отрицания, конъюнкции и дизъюнкции).

( ~ = ˥)

г) Знак отношения: = (знак равенства).

д) Скобки: (,) (левая и правая).

Других знаков алфавит не содержит.

Исчисление строится так, что не всякая конечная последовательность знаков его алфавита является формулой. Формулы — это такие последовательности знаков алфавита (или, как говорят иначе, такие выражения или слова в алфавите), которые удовлетворяют следующему определению.

II. Формулы.

(а) Каждая пропозициональная переменная есть формула.

(б) Константы 0 и 1 суть формулы.

(в) Если α — формула, то ~α —тоже формула; если α и β — формулы, то (α&β) и (α V β) также являются формулами[3].

(г) Других формул, кроме получаемых по правилам (а), (б) и (в), быть не может.

В этом определении в пункте (в) буквы α и β, не принадлежащие нашему алфавиту (и потому называемые метазнаками[4]), означают произвольные конечные последовательности знаков алфавита.

Данное выше определение формул называется индуктивным. Индуктивные определения широко распространены в современной математике, логике, основаниях математики. Они позволяют вполне точно устанавливать, подпадает ли любой данный объект некоторой области под определяемое понятие. Сформулированное выше определение дает возможность установить, является ли любое данное слово нашего алфавита формулой или нет — установить это, «идя обратным ходом» и рано или поздно добираясь до пропозициональных переменных или констант (если слово окажется формулой).

Ознакомимся подробнее с тем, как «работает» данное определение. Докажем, например, что слово (A1 & ~(A2 V A1) не есть формула. Предположим противное: это слово — формула. Тогда знак & мог возникнуть в ней лишь в результате применения пункта (в) определения формулы. Но это значит, что A1 и ~(А2 V А1 должны быть формулами. Однако хотя А1 и есть формула (по пункту (а) определения), слово ~(A2 V A1 формулой не является, ибо для того, чтобы слово, начинающееся со знака ~, было формулой, необходимо, чтобы справа от него стояла формула. Но слово (A2 V A1 не представляет собой формулы, так как оно могло бы быть формулой только по пункту (в), но тогда в нем крайним справа знаком должна была бы быть правая скобка, чего в действительности нет. Таким образом, (А2 V А1 — не формула, а значит, ~(A2 V A1 не формула и, следовательно, исследуемое выражение в целом — не формула. Однако если бы мы рассмотрели, скажем, слово (А1 & (A2 V A1)), то применяя аналогичное рассуждение, убедились бы, что оно является формулой.

III. Равенства.

Если α и β — формулы, то α = β — равенство. Ничто иное равенством не является.

Условимся о сокращении: вместо двух равенств α = β и β = γ разрешается писать просто

α = β = γ («цепочка равенств»)

Аналогично будут пониматься и более длинные цепочки. Так, запись

α = β = γ = δ имеет смысл

α = β,β = γ, γ = δ[5]

IV. Постулаты.

[а]. Схемы аксиом.

1. (α&β) = (β&α) (закон коммутативности для конъюнкции).

2. (α V β) = (β V α) (закон коммутативности для дизъюнкции).

3. ((α&β) &γ) = (α& (β&γ)) (закон ассоциативности, или сочетательности, для конъюнкции).

4. ((α V β) V γ) = (α V (β V γ)) (закон ассоциативности для дизъюнкции).

5. (α& (β V γ)) = ((α&β) V (α&γ)) (закон дистрибутивности, или распределительности, конъюнкции относительно дизъюнкции).

6. (α V (β&γ)) = ((α V β) & (α V γ)) (закон дистрибутивности дизъюнкции относительно конъюнкции).

7. (α& (α V β)) = α (первый закон поглощения).

8. (α V (α&β)) = α (второй закон поглощения).

9. ~(α&β) = (~α V ~β) (первый закон Де Моргана).

10. ~(α V β) = (~α& ~β) (второй закон Де Моргана).

11. (α&α) = α (закон идемпотентности для конъюнкции).

12. (α V α) = α (закон идемпотентности для дизъюнкции).

13. ~~α = α (закон снятия двойного отрицания).

14. (α& 1) = α (закон отбрасывания единицы).

15. (α V 0) = α (закон отбрасывания нуля).

16. (α& ~α) = 0 (закон противоречия, выраженный в форме приравнивания противоречия нулю).

17. (α& ~α)=1 (закон исключенного третьего, выражений в форме равенства).

Перечисленные постулаты[6] являются не аксиомами, а схемами аксиом. Это значит, что, каждый постулат задает бесконечное множество аксиом определенной структуры. Так, схема аксиом 1 задает аксиомы: (А1 & А2) = (A2 & A1), ((А1 V ~A2) & ~A1) = (~A1 & (A1 V ~A2)) и т.д.; аксиомы — это равенства, принимаемые в качестве исходных.

Схемы аксиом 1 и 2 задают свойство перестановочности членов в конъюнктивных и дизъюнктивных формулах. Схемы аксиом 3 и 4 выражают ассоциативные законы, подобные ассоциативным законам школьной алгебры, где, как известно, (а • b) • с = а - (b • с) и (а + b) + с = a + (b + с). В школьной алгебре имеется только один дистрибутивный закон — закон дистрибутивности умножения относительно сложения: A • (b + с) = a • b + A • с, так как обычное сложение чисел не дистрибутивно относительно обычного умножения (то есть неверно, что для любых чисел а, b и с

а + (b • с) = (а + b) • (а + с)).

В данной же системе обе операции, конъюнкция и дизъюнкция, дистрибутивны одна относительно другой (схемы аксиом 5 и 6). Смысл законов Де Моргана[7] (схемы аксиом 9 и 10) можно передать фразами: «Отрицание конъюнктивной формулы означает дизъюнкцию отрицаний ее членов»; «Отрицание дизъюнктивной формулы означает конъюнкцию отрицаний ее членов». Смысл схем аксиом, выражающих остальные законы, непосредственно ясен. Заметим лишь, что они служат эффективным средством упрощения формул рассматриваемой формальной системы, то есть построения по данной формуле таких равных ей формул, которые проще, чем исходная (в том смысле, что содержат меньшее число вхождений логических связок); ср. ниже, с. 75—76.

[b]. Правила вывода.

Если верно равенство α = β, то верно и равенство Ф[α] = Ф[β]. Здесь Ф[α] есть произвольная формула, содержащая в качестве своей части, формулу α (аналогично понимается и Ф[β]). Это — правило замены равным (ср. выше с. 42), но «приуроченное» специально к нашему формальному аппарату. Смысл правила состоит в том, что в произвольной формуле Ф[α], в которую входит α, можно α в любом ее вхождении заменить на какую угодно равную ей формулу β и в результате получится формула Ф[β], равная формуле Ф[α][8].

В дополнение к этому правилу мы будем в процессе переработки равенств пользоваться известными свойствами отношения равенства — рефлексивностью (для любой формулы α справедливо α = α), симметричностью (для любых α и β из α = β следует β = α) и транзитивностью (если α = β и β = γ, то α = γ)[9]. Таким образом, процедуры вывода в данном исчислении представляют собой обычные тождественные преобразования.

V. Определения.

Записи вида (α≡β) и (α→β) суть сокращения для формул вида (~α V β)[10] и ((~α V β) & (α V ~β)).

Приведенное исчисление представляет собой исчисление равенств формул определенного вида — исчисление, которое в алгебраических терминах носит название исчисления равенств булевых выражений[11]. Оно сформулировано нами как неинтерпретированное исчисление, поскольку при его развертывании не было указано, из какой же области следует брать значения пропозициональных переменных, как следует понимать логические связки и константы 0 и 1, какой смысл имеют формулы и как нужно понимать содержание термина «верная формула».



Дадим теперь первую интерпретацию этого исчисления — функциональную.

Функциональная интерпретация

Пропозициональные переменные истолковываются как переменные для чисел 0 и 1 (то есть каждая из переменных может принимать только эти два значения).