Живая математика — страница 17 из 26

[18].


Рис. 85. Брат показал мне занимательную игру


- Все 5 монет, - заявил он, - нужно перенести на третье блюдце, соблюдая следующие три правила, первое правило: за один раз перекладывать только одну монету. Второе: никогда не класть большей монеты на меньшую. Третье: можно временно класть монеты и на среднее блюдце, соблюдая оба правила, но к концу игры все монеты должны очутиться на третьем блюдце в первоначальном порядке. Правила, как видишь, несложные. А теперь приступай к делу.


Так выглядели монеты, о которых идет речь

Я принялся перекладывать. Положил гривенник на третье блюдце, пятиалтынный на среднее и запнулся. Куда положить двугривенный? Ведь он крупнее и гривенника, и пятиалтынного.

- Ну, что же? - выручил меня брат. - Клади гривенник на среднее блюдце, поверх пятиалтынного. Тогда для двугривенного освободится третье блюдце.

Я так и сделал. Но дальше - новое затруднение. Куда положить полтинник? Впрочем, я скоро догадался: перенес сначала гривенник на первое блюдце, пятиалтынный на третье и затем гривенник тоже на третье. Теперь полтинник можно положить на свободное среднее блюдце. Дальше, после длинного ряда перекладываний, мне удалось перенести также рублевую монету с первого блюдца и, наконец, собрать всю кучку монет на третьем блюдце.

- Сколько же ты проделал всех перекладываний? - спросил брат, одобрив мою работу.

- Не считал.

- Давай сосчитаем. Интересно же знать, каким наименьшим числом ходов можно достигнуть цели. Если бы стопка состояла не из 5, а только из 2 монет - пятиалтынного и гривенника, - то сколько понадобилось бы ходов?

- Три: гривенник на среднее блюдце, пятиалтынный - на третье и затем гривенник на третье блюдце.

- Правильно. Прибавим теперь еще монету - двугривенный - и сосчитаем, сколькими ходами можно перенести стопку из этих монет. Поступаем так: сначала последовательно перенесем меньшие две монеты на среднее блюдце. Для этого нужно, как мы уже знаем, 3 хода. Затем перекладываем двугривенный на свободное третье блюдце - 1 ход. А тогда переносим обе монеты со среднего блюдца тоже на третье - еще 3 хода. Итого всех ходов:

3 + 1 + 3 = 7.

- Для четырех монет число ходов позволь мне сосчитать самому. Сначала переношу 3 меньшие монеты на среднее блюдце - 7 ходов; потом полтинник на третье блюдце - 1 ход и затем снова три меньшие монеты на третье блюдце - еще 7 ходов. Итого:

7 + 1 + 7 = 15.

- Отлично. А для пяти монет?

- 15 + 1 + 15 = 31, - сразу сообразил я.

- Ну, вот ты и уловил способ вычисления. Но я покажу тебе, как можно его еще упростить. Заметь, что полученные нами числа 3, 7, 15, 31 - все представляют собой двойку, умноженную на себя один или несколько раз, но без единицы. Смотри.


Рис. 86. Жрецы обязаны перекладывать кружки…


И брат написал табличку:

3 = 2 х 2-1

7 = 2 х 2 x 2-1

15 = 2 х 2 х 2 х 2-1

31=2 x 2 x 2 x 2 x 2-1.

- Понимаю: сколько монет перекладывается, столько раз берется двойка множителем, а затем отнимается единица. Я мог бы теперь вычислить число ходов для любой стопки монет. Например, для 7 монет:

2 х 2 х 2 х 2 х 2 х 2 х 2-1 = 128 -1 = 127.

- Вот ты и постиг эту старинную игру. Одно только практическое правило надо тебе еще знать: если в стопке число монет нечетное, то первую монету перекладывают на третье блюдце, если четное - то на среднее блюдце.

- Ты сказал: старинная игра. Разве не сам ты ее придумал?

- Нет, я только применил ее к монетам. Игра очень древнего происхождения и зародилась, говорят, в Индии. Существует интересная легенда, связанная с этой игрой. В городе Бенаресе будто бы имеется храм, в котором индусский бог Брама при сотворении мира установил три алмазных палочки и надел на одну из них 64 золотых кружка: самый большой внизу, а каждый следующий меньше предыдущего. Жрецы храма обязаны без устали, днем и ночью, перекладывать эти кружочки с одной палочки на другую, пользуясь третьей, как вспомогательной, и, соблюдая правила нашей игры, переносить за раз только один кружок и не класть большего на меньший. Легенда говорит, что когда будут перенесены все 64 кружка, наступит конец мира.

- О, значит, мир давно уже должен был погибнуть, если верить этому преданию!

- Ты, по-видимому, думаешь, что перенесение 64 кружков не должно отнять много времени?

- Конечно. Делая каждую секунду один ход, можно ведь в час успеть проделать 3600 перенесений.

- Ну и что же?

- А в сутки - около ста тысяч. В десять дней - миллион ходов. Миллионом же ходов можно, я уверен, перенести хоть тысячу кружков.

- Ошибаешься. Чтобы перенести всего 64 кружка, нужно уже круглым счетом 500 миллиардов лет.

- «Только» 18 триллионов с лишком, если называть триллионом миллион миллионов.

- Погоди, я сейчас перемножу и проверю.

- Прекрасно. А пока будешь умножать, я успею сходить по своим делам.

И брат ушел, оставив меня погруженным в выкладки. Я нашел сначала произведение 16 двоек, затем умножил этот результат - 65 536 - сам на себя, а то, что получилось, - снова на себя. Потом не забыл отнять единицу.

У меня получилось такое число[19]:

18 446 744 073 709 551 615. Брат, значит, был прав.

Вам, вероятно, интересно было бы знать, какими числами в действительности определяется возраст мира. Ученые располагают на этот счет некоторыми, конечно, лишь приблизительными данными:

Солнце существует…10 000 000 000 000 лет

Земной шар…2 000 000 000»

Жизнь на Земле… 300 000 000»

Человек…300 000»


62. Пари

В столовой дома отдыха за обедом зашла речь о том, как вычисляется вероятность событий. Молодой математик, оказавшийся среди обедающих, вынул монету и сказал:

- Кидаю на стол монету не глядя. Какова вероятность, что она упадет гербом вверх?

- Объясните сначала, что значит «вероятность», - раздались голоса. - Не всем ясно.


Рис. 87. Монета может лечь на стол двояко


- О, это очень просто! Монета может лечь на стол двояко: вот так - гербом вверх и вот так - гербом вниз. Всех случаев здесь возможно только два. Из них для интересующего нас события благоприятен лишь один случай. Теперь находим отношение


Дробь 1/2 и выражает «вероятность» того, что монета упадет гербом вверх.

- С монетой-то просто, - вмешался кто-то. - А вы рассмотрите случай посложней, с игральной костью например.

- Давайте рассмотрим, - согласился математик. - У нас игральная кость, кубик с цифрами на гранях. Какова вероятность, что брошенный кубик упадет определенной цифрой вверх, скажем, вскроется шестеркой? Сколько здесь всех возможных случаев? Кубик может лечь на любую из своих шести граней; значит, возможно всего 6 случаев. Из них благоприятен нам только один: когда вверху шестерка. Итак, вероятность получится от деления 1 на 6. Короче говоря, она выражается дробью 1/6.

- Неужели можно вычислить вероятность во всех случаях? - спросила одна из отдыхающих. - Возьмите такой пример. Я загадала, что первый прохожий, которого мы увидим из окна столовой, будет мужчина. Какова вероятность, что я отгадала?

- Вероятность, очевидно, равна половине, если только мы условимся и годовалого мальчика считать за мужчину. Число мужчин на свете равно числу женщин.

- А какова вероятность, что первые двое прохожих окажутся оба мужчинами? - спросил один из отдыхающих.

- Этот расчет немногим сложнее. Перечислим, какие здесь вообще возможны случаи. Во-первых, возможно, что оба прохожих будут мужчины. Во-вторых, что сначала покажется мужчина, за ним женщина. В-третьих, наоборот: что раньше появится женщина, потом мужчина. И, наконец, четвертый случай: оба прохожих - женщины. Итак, число всех возможных случаев - 4. Из них благоприятен, очевидно, только один случай - первый. Получаем для вероятности дробь 1/4. Вот ваша задача и решена.

- Понятно. Но можно поставить вопрос и о трех мужчинах: какова вероятность, что первые трое прохожих все окажутся мужчинами?

- Что же, вычислим и это. Начнем опять с подсчета возможных случаев. Для двоих прохожих число всех случаев равно, мы уже знаем, четырем. С присоединением третьего прохожего число возможных случаев увеличивается вдвое, потому что к каждой из четырех перечисленных группировок двух прохожих может присоединиться либо мужчина, либо женщина. Итого, всех случаев возможно здесь 4 х 2 = 8. А искомая вероятность, очевидно, равна 1/8, потому что благоприятен событию только 1 случай. Здесь легко подметить правило подсчета:

в случае двух прохожих мы имели вероятность


в случае трех -



Рис. 88. Игральная кость


в случае четырех - вероятность равна произведению четырех половинок и т. д.

Вероятность все уменьшается, как видите.

- Чему же она равна, например, для десятка прохожих?

- То есть какова вероятность, что первые десять прохожих все кряду окажутся мужчинами? Вычислим, как велико произведение десяти половинок. Это - 1/1024, менее одной тысячной доли. Значит, если вы бьетесь об заклад, что это случится, и ставите 1 рубль, то я могу ставить 1000 рублей за то, что этого не произойдет,

- Выгодное пари, - заявил чей-то голос. - Я бы охотно поставил рубль, чтобы получить возможность выиграть целую тысячу.

- Но имеется тысяча шансов против вашего одного, учтите и это.

- Ничего не значит. Я бы рискнул рублем против тысячи даже и за то, что сотня прохожих окажутся все подряд мужчинами.

- А вы представляете себе, как мала вероятность такого события? - спросил математик.

- Одна миллионная или что-нибудь в этом роде?

- Неизмеримо меньше! Миллионная доля получится уже для 20 прохожих. Для сотни прохожих будем иметь… Дайте-ка я прикину на бумажке. Миллиардная… Триллионная… Квадриллионная… Ого! Вероятность равна единице, деленной на единицу с тридцатью нулями!