Живая математика — страница 19 из 26

Чтобы при счете шагов не сбиться, можно - особенно на длинных расстояниях - вести счет следующим образом. Считают шаги только до 10; досчитав до этого числа, загибают один палец левой руки. Когда все пальцы левой руки загнуты, т. е. пройдено 50 шагов, загибают один палец на правой руке. Так можно вести счет до 250, после чего начинают сызнова, запоминая, сколько раз были загнуты все пальцы правой руки. Если, например пройдя некоторое расстояние, вы загнули все пальцы правой руки два раза и к концу пути у вас окажутся загнутыми на правой руке 3 пальца, а на левой 4, то вами сделано было шагов

2 х 250 + 3 х 50 + 4 х 10 = 690.

Сюда нужно прибавить еще те несколько шагов, которые сделаны после того, как был загнут в последний раз палец левой руки.

Отметим попутно следующее старое правило: длина среднего шага взрослого человека равна половине расстояния от его глаз до ступней.

Другое старинное практическое правило относится к скорости ходьбы: человек проходит в час столько километров, сколько шагов делает он в 3 с. Легко показать, что правило это верно лишь для определенной длины шага и притом для довольно большого шага. В самом деле: пусть длина шага х м, а число шагов в 3 с равно п. Тогда в 3 с пешеход делает пх м, а в час (3600 с) - 1200 пх м, или 1,2 пх км. Чтобы путь этот равнялся числу шагов, делаемых в 3 с, должно существовать равенство:

1.2 пх = п

или

1.2 х = 1,

откуда

х = 0,83 м.

Если верно предыдущее правило о зависимости длины шага от роста человека, то второе правило, сейчас рассматриваемое, оправдывается только для людей среднего роста - около 175 см.


II

Для обмера предметов средней величины, не имея под рукой метровой линейки или ленты, можно поступать так. Надо натянуть веревочку или палку от конца протянутой в сторону руки до противоположного плеча (рис. 92) - это и есть у взрослого мужчины приблизительная длина метра. Другой способ получить примерную длину метра состоит в том, чтобы отложить по прямой линии 6 «четвертей», т. е. 6 расстояний между концами большого и указательного пальцев, расставленных как можно шире (рис. 93, а). Последнее указание вводит нас в искусство мерить «голыми руками»: для этого необходимо лишь предварительно измерить кисть своей руки и твердо запомнить результаты промеров.

Что же надо измерить в кисти своей руки? Прежде всего ширину ладони, как показано на нашем рис. 93, 6. У взрослого человека она равна примерно 10 см; у вас она, быть может, меньше, и вы должны знать, на сколько именно меньше. Затем нужно измерить, как велико у нас расстояние между концами среднего и указательного пальцев, раздвинутых возможно шире (рис. 93, в). Далее полезно знать длину своего указательного пальца, считая от основания большого пальца, как указано на рис. 93, г. И, наконец, измерьте расстояние концов большого пальца и мизинца, когда они широко расставлены, как на рис. 93, д.


Рис. 92. Расстояние от конца вытянутой руки до плеча другой руки равно примерно одному метру


Рис. 93. Что надо измерить на своей руке, чтобы обходиться потом без мерной ленты


Пользуясь этим «живым масштабом», вы можете производить приблизительные измерения мелких предметов.


III

Хорошую службу также могут сослужить наши медные (бронзовые) монеты современной[21] чеканки. Не многим известно, что поперечник копеечной монеты в точности равен 1 1/2 см, а пятака - 2 1/2 см, так что положенные рядом обе монеты дают 4 см (рис. 94). Отняв от ширины пятака ширину копеечной монеты, получите ровно 1 см. Если пятака и копейки при вас не окажется, а будут только 2-копеечная и 3-копеечная монеты, то и они могут до известной степени выручить вас, если запомните твердо, что положенные рядом обе монеты дают 4 см (рис. 95). Согнув 4-сантиметровую бумажную полоску пополам и затем еще раз пополам, получите масштаб из 1 см.


Рис. 94. Пятак и копейка, положенные вплотную, составляют 4 см


Рис. 95. Монеты в 3 и 2 коп., лежа рядом, составляют 4 см


Вы видите, что при известной подготовке и находчивости вы и без мерной линейки можете производить годные для практики измерения.

К этому полезно будет прибавить еще, что наши медные (бронзовые) монеты могут служить при нужде не только масштабом, но и удобным разновесом для отвешивания грузов. Новые, не потертые медные монеты современной чеканки весят столько граммов, сколько обозначено на них копеек[22] копеечная монета - 1 г, 2-копеечная - 2 г и т. д. Вес монет, бывших в употреблении, незначительно отступает от этих норм. Так как в обиходе часто не бывает под рукой именно мелких разновесок в 1-10 г, то знание сейчас указанных соотношений может весьма пригодиться.


Глава девятая ГЕОМЕТРИЧЕСКИЕ головоломки


Для разрешения собранных в этой главе головоломок не требуется знания полного курса геометрии. С ними в силах справиться и тот, кто знаком лишь со скромным кругом начальных геометрических сведений. Две дюжины предлагаемых здесь задач помогут читателю удостовериться, действительно ли владеет он теми геометрическими знаниями, которые считает усвоенными. Подлинное знание геометрии состоит не только в умении перечислять свойства фигур, но и в искусстве распоряжаться ими на практике для решения реальных задач. Что проку в ружье для человека, не умеющего стрелять?

Пусть же читатель проверит, сколько метких попаданий окажется у него из 24 выстрелов по геометрическим мишеням.


64. Телега

Почему передняя ось телеги больше стирается и чаще загорается, чем задняя?


Рис. 96. Какой величины угол, рассматриваемый в лупу?


65. В увеличительное стекло

Угол в 1 1/2° рассматривают в лупу, увеличивающую в 4 раза. Какой величины покажется угол (рис. 96)?


66. Плотничий уровень

Вам знаком, конечно, плотничий уровень с газовым пузырьком (рис. 97), отходящим в сторону от метки, когда основание уровня имеет наклон. Чем больше этот наклон, тем больше отодвигается пузырек от средней метки.

Причина движения пузырька та, что, будучи легче жидкости, в которой он находится, он всплывает вверх. Но если бы трубка была прямая, пузырек при малейшем наклоне отбегал бы до самого конца трубки, т. е. до наиболее высокой ее части. Такой уровень, как легко понять, был бы на практике очень неудобен. Поэтому трубка уровня берется изогнутая, как показано на рисунке. При горизонтальном положении основания такого уровня пузырек, занимая высшую точку трубки, находится у ее середины; если же уровень наклонен, высшей точкой трубки становится уже не ее середина, а некоторая соседняя с ней точка, и пузырек отодвигается от метки на другое место трубки[23].


Рис. 97. Плотничий уровень

Рис. 98


Вопрос задачи состоит в том, чтобы определить, на сколько миллиметров отодвинется от метки пузырек, если уровень наклонен на полградуса, а радиус дуги изгиба трубки - 1 м.


67. Число граней

Вот вопрос, который, без сомнения, покажется многим слишком наивным или, напротив, чересчур хитроумным.

Сколько граней у шестигранного карандаша?

Раньше чем заглянуть в ответ, внимательно вдумайтесь в задачу.


68. Лунный серп

Фигуру лунного серпа (рис. 98) требуется разделить на 6 частей, проведя всего только 2 прямые линии.

Как это сделать?


69. Из 12 спичек

Из 12 спичек можно составить фигуру креста (рис. 99), площадь которого равна 5 «спичечным» квадратам. Измените расположение спичек так, чтобы контур фигуры охватывал площадь, равную только 4 «спичечным» квадратам. Пользоваться при этом услугами измерительных приборов нельзя.


Рис. 99


Рис. 100


70. Из 8 спичек

Из 8 спичек можно составить довольно разнообразные замкнутые фигуры. Некоторые из них представлены на рис. 100; площади их, конечно, различны.

Задача состоит в том, чтобы составить из 8 спичек фигуру, охватывающую наибольшую площадь.


71. Путь мухи

На внутренней стенке стеклянной цилиндрической банки виднеется капля меда в трех сантиметрах от верхнего края сосуда. А на наружной стенке в точке, диаметрально противоположной, уселась муха (рис. 101).

Укажите мухе кратчайший путь, по которому она может добежать до медовой капли.

Высота банки 20 см; диаметр 10 см.

Не полагайтесь на то, что муха сама отыщет кратчайший путь и тем облегчит вам решение задачи: для этого ей нужно было бы обладать геометрическими познаниями, слишком обширными для мушиной головы.


Рис. 101. Укажите мухе кратчайший путь к медовой капле


72. Найти затычку

Перед вами дощечка (рис. 102) с тремя отверстиями: квадратным, треугольным и круглым. Может ли существовать одна затычка такой формы, чтобы закрывать все эти разновидные отверстия?


Рис. 102. Найдите одну затычку к этим трем отверстиям


73. Вторая затычка

Если вы справились с предыдущей задачей, то, быть может, вам удастся найти затычку и для таких отверстий, какие показаны на рис. 103?


74. Третья затычка

Наконец, еще задача в том же роде: существует ли одна затычка для трех отверстий (рис. 104)?


75. Продеть пятак

Запаситесь двумя монетами современной[24]