1/2 раза больше доли второй - тогда обе кончат писать одновременно. Отсюда следует, что первая должна взяться переписывать 3/5 доклада, вторая - 2/5.
Собственно, задача уже почти решена. Остается только найти, за сколько времени первая машинистка выполнит свои 3/5 работы. Всю работу она может сделать, мы знаем, за 2 часа; значит, 3/5 работы будет выполнено за 2 х 3/5 = 11/5 часа. За такое же время должна сделать свою долю работы и вторая машинистка.
Итак, кратчайший срок, в какой может быть переписан доклад обеими машинистками, - 1 час 12 мин.
37. Если вы думаете, что шестеренка обернется три раза, то ошибаетесь: она сделает не три, а четыре оборота.
Чтобы наглядно уяснить себе, в чем тут дело, положите перед собою на гладком листе бумаги две одинаковые монеты, например два двугривенных, так, как показано на рис. 36. Придерживая рукой нижнюю монету, катите по ее ободу верхнюю. Вы заметите неожиданную вещь: когда верхняя монета обойдет нижнюю наполовину и окажется внизу, она успеет сделать уже полный оборот вокруг своей оси; это будет видно по положению цифр на монете.
Рис. 36
А обходя неподвижную монету кругом, монета наша успеет обернуться не один, а два раза. Вообще, когда тело, вертясь, движется по кругу, оно делает одним оборотом больше, чем можно насчитать непосредственно. По той же причине и наш земной шар, обходя вокруг Солнца, успевает обернуться вокруг своей оси не 365 с четвертью, а 366 с четвертью раз, если считать обороты не по отношению к Солнцу, а по отношению к звездам. Вы понимаете теперь, почему звездные сутки короче солнечных.
38. Через трижды три года загадчик будет на 9 лет старше, чем теперь. Трижды три года назад он был на 9 лет моложе, чем теперь. Разница лет, следовательно, составляет 9 + 9, т. е. 18 лет. Это и есть возраст загадчика, согласно условию задачи.
Несложно решается задача и в том случае, если, обратившись к услугам алгебры, составить уравнение. Искомое число лет обозначим буквой х. Возраст спустя три года надо тогда обозначить через х + 3, возраст три года назад - через х-3. Имеем уравнение
3(х + 3) - 3(х - 3) = х,
решив которое получаем х = 18. Любителю головоломок теперь 18 лет. Проверим: через три года ему будет 21 год; три года назад ему было 15 лет. Разность
Зх 21 - Зх 15 = 63 - 45 = 18,
т. е. равна нынешнему возрасту любителя головоломок.
39. Как и предыдущая, задача решается с помощью несложного уравнения. Если жене теперь х лет, то мужу 2х. Восемнадцать лет назад каждому из них было на 18 лет меньше: мужу 2х - 18, жене х - 18. При этом известно, что муж был тогда втрое старше жены:
3(х - 18) = 2х - 18.
Решив это уравнение, получаем х = 36: жене теперь 36 лет, мужу 72.
40… Пусть в начале игры у каждого было х копеек. После первого кона у одного игрока стало х+20, у другого х-20. После второго кона прежде выигравший партнер потерял 2/3 своих денег; следовательно, у него осталось
Другой партнер, имевший х - 20, получил 2/3(х + 20); следовательно, у него оказалось
Так как известно, что у первого игрока оказалось вчетверо меньше денег, чем у другого, то
откуда х = 100. У каждого игрока было в начале игры по одному рублю.
41. Обозначим первоначальное число отдельных рублей через х, а число двадцатикопеечных монет через у. Тогда, отправляясь за покупками, я имел в кошельке денег
100х + 20у коп.
Возвратившись, я имел
100у + 20х коп.
Последняя сумма, мы знаем, втрое меньше первой; следовательно,
3(100у + 20х) = ЮСЬс + 20у.
Упрощая это выражение, получаем
% = 7у.
Если у = 1, то х = 7. При таком допущении у меня первоначально будет денег 7 руб. 20 коп.; это не вяжется с условием задачи («около 15 рублей»).
Испытаем у = 2, тогда х = 14. Первоначальная сумма равнялась 14 руб. 40 коп., что хорошо согласуется с условием задачи.
Допущение у = 3 дает слишком большую сумму денег:
21 руб. 60 коп.
Следовательно, единственный подходящий ответ -
14 руб. 40 коп. После покупок осталось 2 отдельных рубля и 14 двугривенных, т. е. 200 + 280 = 480 коп.; это действительно составляет треть первоначальной суммы (1440: 3 = 480).
Израсходовано же было 1440 - 480 = 960. Значит, стоимость покупок 9 руб. 60 коп.
Глава четвертая УМЕЕТЕ ЛИ ВЫ СЧИТАТЬ?
Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Чтобы произносить подряд «один», «два», «три», особого искусства не требуется. И все же, я уверен, вы не всегда хорошо справляетесь с таким, казалось бы, простым делом. Все зависит от того, что считать. Нетрудно пересчитать гвозди в ящике. Но пусть в нем лежат не одни только гвозди, а вперемешку гвозди с винтами; требуется установить, сколько тех и других отдельно. Как вы тогда поступите? Разберете груду на гвозди и винты отдельно, а затем пересчитаете их?
Такая задача возникает и перед хозяйкой, когда ей приходится считать белье для стирки. Она раскладывает сначала белье по сортам: сорочки в одну кучу, полотенца в другую, наволочки в третью и т. д. И лишь провозившись с этой довольно утомительной работой, приступает она к счету штук в каждой кучке.
Вот это и называется не уметь считать! Потому что такой способ счета неоднородных предметов довольно неудобен, хлопотлив, а зачастую даже и вовсе не осуществим. Хорошо, если вам приходится считать гвозди или белье: их легко раскидать по кучкам. Но поставьте себя в положение лесовода, которому необходимо сосчитать, сколько на гектаре растет сосен, сколько на том же участке елей, сколько берез и сколько осин. Тут уж рассортировать деревья, сгруппировать их предварительно по породам нельзя. Что же, вы станете считать сначала только сосны, потом только ели, потом одни березы, затем осины? Четыре раза обойдете участок?
Нет ли способа сделать это проще, одним обходом участка? Да, такой способ есть, и им издавна пользуются работники леса. Покажу, в чем он состоит, на примере счета гвоздей и винтов.
Чтобы в один прием сосчитать, сколько в коробке гвоздей и сколько винтов, не разделяя их сначала по сортам, запаситесь карандашом и листком бумаги, разграфленным по такому образцу:
Затем начинайте счет. Берите из коробки первое, что попадется под руку. Если это гвоздь, вы делаете на листке бумаги черточку в графе гвоздей; если винт - отмечаете его черточкой в графе винтов. Берете вторую вещь и поступаете таким же образом. Берете третью вещь и т. д., пока не опорожнится весь ящик. К концу счета на бумажке окажется в графе гвоздей столько черточек, сколько было в коробке гвоздей, а в графе винтов - столько черточек, сколько было винтов. Остается только подытожить черточки на бумаге.
Рис. 37
Рис. 38
Счет черточек можно упростить и ускорить, если не ставить их просто одну под другой, а собирать по пяти в такие, например, фигурки, какие изображены на рис. 37.
Квадратики этого вида лучше группировать парами, т. е. после первых 10 черточек ставить 11-ю в новую колонку; когда во второй колонке вырастут 2 квадрата, начинают следующий квадрат в третьей колонке и т. д. Черточки будут располагаться тогда примерно в таком виде, как показано на рис. 38.
Рис. 39
Считать так расположенные черточки очень легко: вы сразу видите, что тут три полных десятка, один пяток и еще три черточки, т. е. всего 30 + 5 + 3 = 38.
Можно пользоваться фигурками и иного вида; часто, например, употребляют такие знаки, где каждый полный квадратик означает 10 (рис. 39).
При счете деревьев разных пород на участке леса вы должны поступить совершенно таким же образом, но на листке бумаги у вас будут уже не две графы, а четыре. Удобнее здесь иметь графы не стоячие, а лежачие. До подсчета листок имеет, следовательно, такой вид, как на рис. 40.
Рис. 40. Бланк для подсчета деревьев в лесу
Рис. 41. Заполненный бланк рис. 40
В конце же подсчета получается на листке примерно то, что показано на рис. 41.
Подвести окончательный итог здесь очень легко:
Сосен.. 53
Берез.. 46
Елей.. 79
Осин.. 37
Тем же приемом счета пользуется и медик, считая под микроскопом, сколько во взятой пробе крови оказывается красных шариков и сколько белых.
Составляя список белья для стирки, хозяйка может поступить таким же образом, сберегая труд и время.
Если вам понадобится сосчитать, например, какие растения и в каком числе растут на небольшом участке луга, вы уже будете знать, как справиться с этой задачей в возможно короткий срок. На листке бумаги вы заранее выпишете названия замеченных растений, отведя для каждого особую графу и оставив несколько свободных граф про запас для тех растений, которые вам могут еще попасться. Вы начнете подсчет с такой, например, бумажкой, какая указана на рис. 42.
Дальше поступают так же, как и при подсчете на участке леса.
Для чего, собственно, надо считать деревья в лесу? Городским жителям это представляется даже и вовсе невозможным делом. В романе Л. Н. Толстого «Анна Каренина» знаток сельского хозяйства, Левин, спрашивает своего не сведущего в этом деле родственника, собирающегося продать лес:
«- Счел ли ты деревья?
Рис. 42. Как приступить к счету растений на участке луга
- Как счесть деревья?! - с удивлением отвечает тот. - «Счесть пески, лучи планет хотя и мог бы ум высокий…»
- Ну да, а ум высокий Рябинина (купца) может. И ни один мужик не купит, не считая».
Деревья в лесу считают для того, чтобы определить, сколько в нем кубических метров древесины. Пересчитывают деревья не всего леса, а определенного участка, в четверть или половину гектара, выбранного так, чтобы густота, состав, толщина и высота его деревьев были средние в данном лесу. Для удачного выбора такой «пробной площади» нужно, конечно, иметь опытный глаз.