Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта — страница 20 из 80

глубокого обучения с подкреплением{9}. Обучение с подкреплением — классический метод машинного обучения, основанный на бихевиористской психологии, которая утверждает, что достижение положительного результата подкрепляет ваше стремление повторить выполненное действие, и наоборот. Словно собака, которая учится выполнять команды хозяина, опираясь на его поддержку и в надежде на угощение, искусственный интеллект DeepMind учился двигать платформу, ловя шарик, в надежде на увеличение счета. DeepMind объединила эту идею с глубоким обучением: там научили глубокую нейронную сеть, описанную в предыдущей главе, предсказывать, сколько очков в среднем заработает АI, нажимая ту или иную из доступных клавиш, и, исходя из этого и учитывая текущее состояние игры, он выбирал ту клавишу, которую нейронная сеть оценивала как наиболее перспективную.

Рассказывая о том, что поддерживает мою положительную самооценку, я включил в этот список и способность решать разнообразные не решенные до меня задачи. Интеллект, ограниченный лишь способностью научиться хорошо играть в Breakout и больше ни на что не годный, следует считать чрезвычайно узким. Для меня вся важность прорыва DeepMind заключалась в том, что глубокое обучение с подкреплением — исключительно универсальный метод. Нет сомнений, что они практиковали его же, когда их AI учился играть в сорок девять различных игр Atari и достиг уровня, при котором стал уверенно обыгрывать любых человеческих соперников в двадцать девять из них, от Pong до Boxing, Video Pinball и Space Invaders.

Не надо было долго ждать момента, когда эту идею начнут использовать для обучения AI более современным играм — с трехмерными, а не двухмерными мирами. Вскоре конкурент компании DeepMind, базирующийся в Сан-Франциско OpenAI, выпустил платформу под названием Universe, где DeepMind AI и другие интеллектуальные агенты могли совершенствоваться во взаимодействии с компьютером так же, как если бы это была игра, — орудуя мышкой, набирая что угодно на клавиатуре, открывая любое программное обеспечение, например запуская веб-браузер и роясь в интернете.

Охватывая взглядом будущее углубленного обучения с подкреплением, трудно предсказать, к чему оно может привести. Возможности метода явно не ограничиваются виртуальным миром компьютерных игр, поскольку, если вы робот, сама жизнь может рассматриваться как игра. Стюарт Рассел рассказывал мне о своем первом настоящем HS-моменте, когда он наблюдал, как его робот Big Dog поднимается по заснеженному лесному склону, изящно решая проблему координации движений конечностей, которую он сам не мог решить в течение многих лет{10}. Для прохождения этого эпохального этапа в 2008 году потребовались усилия огромного количества первоклассных программистов. После описанного прорыва DeepMind не осталось причин, по которым робот не может рано или поздно воспользоваться каким-нибудь вариантом глубокого обучения с подкреплением, чтобы самостоятельно научиться ходить, без помощи людей-программистов: все, что для этого необходимо, — это система, начисляющая ему очки при достижении успеха. Роботы в реальном мире также без помощи людей-программистов могут научиться плавать, летать, играть в настольный теннис, драться и делать все остальное из почти бесконечного списка других двигательных задач. Для ускорения процесса и снижения риска где-нибудь застрять или повредить себя в процессе обучения прохождение его начальных этапов будет, вероятно, осуществляться в виртуальной реальности.

Интуиция, творчество, стратегия

Еще одним поворотным моментом для меня стала победа созданного DeepMind искусственного интеллекта AlphaGo в матче из пяти партий в го против Ли Седоля, который на начало XXI века считался лучшим игроком в го в мире.

Тогда все ждали, что людей вот-вот лишат звания лучших игроков в го, как это случилось с шахматами десятилетиями раньше. И только настоящие знатоки го предсказывали, что на это потребуется еще одно десятилетие, и поэтому победа AlphaGo стала поворотным моментом для них так же, как и для меня. Ник Бострём и Рэй Курцвейл оба подчеркнули, что этот прорыв AI было очень трудно предвидеть, о чем свидетельствуют, в частности, интервью самого Ли Седоля до и после проигрыша в первых трех играх:

Октябрь 2015: «Оценивая нынешний уровень машины… я думаю, что выиграю почти все партии».

Февраль 2016 года: «Я слышал, что Google DeepMind AI стал на удивление силен и быстро учится, но я убежден, что смогу выиграть хотя бы в этот раз».

9 марта 2016 года: «Я был очень удивлен, так как совсем не ожидал, что могу проиграть».

10 марта 2016 года: «У меня нет слов… Я просто в шоке. Должен признать… что третья игра будет для меня нелегкой».

12 марта 2016 года: «Я чувствовал свое бессилие».

В течение года после победы над Ли Седолем улучшенный вариант AlphaGo обыграл двадцать лучших игроков в го в мире, не проиграв ни одной партии.

Почему все это воспринималось мной так лично? Я признавался выше, что считаю интуицию и способность к творчеству основными своими человеческими качествами, и, как я сейчас понимаю, в тот момент я почувствовал, что AlphaGo обладает обоими.

Играющие в го по очереди ставят черные и белые камни на доске 19 на 19 (см. рис. 3.2). Возможных позиций в го больше, чем атомов в нашей Вселенной, а это означает, что просчитать все интересные последствия каждого хода — дело безнадежное. Поэтому игроки в значительной степени полагаются на подсознательную интуицию, которая дополняет их сознательные рассуждения в оценке сильных и слабых сторон той или иной позиции, и у экспертов эта интуиция развивается в почти сверхъестественное чувство. Как мы видели в предыдущей главе, в результате глубокого обучения иногда возникает нечто напоминающее интуицию: глубокая нейронная сеть может определить, что на картинке изображена кошка, не имея возможности объяснить почему. Поэтому команда DeepMind поставила на идею, что глубокое обучение может распознавать не только кошек, но и сильные позиции в го. Главное, к чему они стремились, создавая AlphaGo, — было поженить интуицию, присущую глубокому обучению, с логической силой классического GOFAI[16], каков он был до революции глубокого обучения. Они взяли обширную базу данных, где было много позиций го как из игр, сыгранных людьми, так и из игр, сыгранных AlphaGo с клоном самого себя, и тренировали глубокую нейронную сеть предсказывать для каждой позиции вероятность итоговой победы белых. Кроме того, они натренировали отдельную сеть предсказывать вероятные следующие ходы. Затем они объединили эти две сети, пользуясь «старыми добрыми методами» для быстрого просмотра сокращенного списка наиболее вероятных будущих позиций, чтобы определить следующий ход, для которого следующая позиция окажется самой сильной.


Рис. 3.2

Продолжение DeepMind — искусственный интеллект AlphaGo. Пренебрегая тысячелетним человеческим опытом игры в го, он сделал невероятно творческий ход на пятой линии, вся сила которого обнаружилась только 50 ходов спустя, в результате у легенды го Ли Седоля не оставалось никаких шансов.


Детьми, появившимися в браке интуиции и логики, оказались ходы, которые были не просто сильными, — в некоторых случаях их с полным основанием можно назвать креативными. Например, тысячелетняя мудрость го учит, что в начале игры надо стремиться захватить третью и четвертую линии от края. Тут есть возможность для торга: игра на третьей линии дает возможность быстро проводить краткосрочные захваты территории на краю доски, в то время как игра на четвертой линии способствует долгосрочному стратегическому влиянию на центр.

На тридцать седьмом ходу второй партии AlphaGo потряс мир го, пойдя наперекор этой древней мудрости и начав играть на пятой линии (рис. 3.2), словно он больше доверял своей способности долгосрочного планирования, чем человек, и поэтому отдавал предпочтение стратегическому преимуществу, а не краткосрочной выгоде. Комментаторы были ошеломлены, Ли Седоль даже поднялся и на какое-то время покинул помещение, где шла игра{11}. Они продолжали играть еще достаточно долго, было сделано еще примерно пятьдесят ходов, и только после этого основные события из нижнего левого угла доски переместились в центр, достигнув того самого камня, поставленного на тридцать седьмом ходу! И его присутствие здесь в конце концов сделало всю игру, навсегда внеся вторжение AlphaGo на пятую линию в анналы истории го как одно из самых важных открытий.

Именно из-за того, что игра в го требует интуиции и творчества, многие считают го в бо́льшей степени искусством, чем просто игрой. В Древнем Китае умение играть в го считалось одним из четырех «основных искусств» наряду с живописью, каллиграфией и игрой на цине[17], и оно остается чрезвычайно популярным в Азии: за первой партией между AlphaGo и Ли Седолем следили почти 300 миллионов человек. Результат матча глубоко потряс мир го, и победа AlphaGo стала для него важнейшей исторической вехой. Кэ Цзиэ, обладатель самого высокого рейтинга по го в то время, так прокомментировал это событие: «Человечество играло в го тысячи лет, и все же, как нам показал искусственный интеллект, мы всего лишь поцарапали его поверхность… Союз игроков-людей и игровых компьютеров открывает новую эру… Человек и искусственный интеллект смогут найти истину го вместе». Плодотворное сотрудничество между человеком и машиной, и в самом деле, представляется очень многообещающим во многих сферах, включая науку, где искусственный интеллект, надеюсь, поможет нам, людям, углубить наше понимание мира и в значительно большей мере реализовать наш потенциал.

В конце 2017 года команда DeepMind запустила следующую модель — AlphaZero. Человеческому искусству игры в го тысячи лет, были сыграны миллионы партий, но все они не понадобились AlphaZero, которая училась с нуля, играя сама с собой. Она не только разгромила AlphaGo, но и стала сильнейшим в мире игроком в шахматы — и это тоже исключительно играя сама с собой. После двух часов практики она могла победить любого шахматиста-человека, а через четыре — обыграла Stockfish, лучшую в мире шахматную программу. Меня тут особенно впечатля