ом другом, а это позволит расположить сферу практически где угодно. Статиты должны быть исключительно легкими — с удельным весом, не превышающим 0,77 граммов на квадратный метр, что примерно в 100 раз легче бумаги, но в этом нет ничего диковинного. Например, лист графена (моноатомарный слой углерода в гексагональной упаковке — вроде проволочного забора для кур) весит в тысячу раз меньше. Если сфера Дайсона строится в основном для того, чтобы отражать солнечный свет, а не поглощать его, то суммарная интенсивность его внутри феноменально повысится, раздувая сферу изнутри и увеличивая массу, которую она сможет выдерживать. Есть много звезд, светимость которых в тысячи и даже миллионы раз превышает солнечную, и они будут выдерживать соответственно бóльшие массы на стационарной сфере Дайсона.
Если намного более тяжелая твердая сфера Дайсона нужна здесь, в Солнечной системе, то, чтобы выдерживать силу притяжения Солнца, понадобятся ультрапрочные материалы, способные не плавиться и не изгибаться при нагрузках в тысячи раз бóльших, чем в фундаменте небоскребов. Чтобы выдержать долгосрочное использование, сфера Дайсона должна быть динамической и интеллектуальной, всегда готовой точно подстроить свое положение и форму в ответ на разные возмущения или открыть нужный пролет, пропуская коварный астероид или комету, угрожающие что-нибудь разрушить. Для борьбы с такими нежелательными гостями можно также использовать системы типа «обнаружить и отклонить» — отклонив, их можно будет разрушить, а затем применить составляющее их вещество с бóльшей пользой.
Для нынешнего человечества жизнь на сфере Дайсона или внутри нее была бы в лучшем случае непривычной, а в худшем — невозможной, но это не должно удерживать будущие биологические или небиологические формы жизни от стремления к этому. При вращении на орбите гравитации практически не будет, и если вы захотите прогуляться по стационарному ее варианту, не сваливаясь, вы сможете сделать это только на внешней поверхности противоположной Солнцу, и сила притяжения там будет в десять тысяч раз слабее той, к которой вы привыкли. У вас не будет никакого магнитного поля (если только вы не создадите его сами), которое защищало бы вас от опасных частиц, летящих от Солнца. Но есть и хорошие новости: на сфере Дайсона, расположенной на нынешней земной орбите, у нас будет в 500 миллионов раз больше места, чем сейчас.
Рис. 6.1
Пара вращающихся в противоположных направлениях цилиндров О’Нила обеспечивает людям комфортное обитание с силой гравитации как на Земле. Надо только держать плоскости вращения ориентированными строго на Солнце. Искусственная гравитация создается во вращающихся цилиндрах центробежной силой, а поворачивающиеся зеркала направляют солнечные лучи так, чтобы день и ночь чередовались по обычному 24-часовому циклу. Малые цилиндры в кольцах предназначены для сельского хозяйства. Изображение предоставлено Риком Гвидиче (NASA).
Если мы хотим иметь более привычные и похожие на земные места обитания, то нам есть на что надеяться: построить их значительно легче, чем сферу Дайсона. Например, на рис. 6.1, 6.2 показан проект цилиндрических станций, спроектированных американским физиком Герардом О’Нилом, на которых будет искусственное гравитационное поле, защита от космических лучей, 24-часовой световой цикл, искусственная земная атмосфера и земная экосистема. Такие станции могут свободно вращаться на орбите внутри сферы Дайсона, или их модифицированные варианты могут быть прикреплены к ней снаружи.
Рис. 6.2
Табл. 6.1.
Эффективность превращения вещества в энергию в сопоставлении с теоретическим пределом в E = mc2. Как объясняется в основном тексте, получение 90 % всей энергии возможно при испарении черной дыры, но это слишком медленный процесс, чтобы был шанс воспользоваться им на практике, а любое ускорение его ведет к существенному снижению эффективности.
Хотя сферы Дайсона по современным стандартам высокопроизводительны в энергетическом отношении, они ни в чем не выходят за пределы, определенные законами физики. Эйнштейн учил нас, что если мы можем превратить массу в энергию со 100-процентной эффективностью[38], то имеющаяся масса m на входе даст нам на выходе энергию Е, количество которой будет определяться формулой:
E = mc2,
где с — скорость света. Это означает, что, так как скорость света огромна, то небольшой массы достаточно, чтобы произвести очень большое количество энергии. Если бы мы в изобилии располагали антиматерией (которой у нас совсем нет), то построить электростанцию со 100-процентной эффективностью было бы совсем просто: просто подливая по чайной ложке антиматерию в бак с водой, мы высвобождали бы каждый раз столько же энергии, сколько высвобождает взрыв 200 тысяч тонн тротила или более или менее типичной водородной бомбы, чего вполне достаточно на 7 минут для всей планеты.
Рис. 6.3
Более совершенные технологии позволят извлекать из вещества существенно больше энергии, чем мы можем получить перевариванием пищи или сжиганием топлива, и даже водородный синтез позволяет извлечь лишь небольшую часть энергии — в 140 раз меньше, чем допустимо с точки зрения законов физики. Силовые станции, использующие сфалероны, квазары или испаряющиеся черные дыры, позволяют существенно улучшить энергоотдачу.
В отличие от этого любой из способов получения энергии, применяемых нами сейчас, прискорбно неэффективен, о чем можно судить по данным табл. 6.1 и рис. 6.3. Переваривание шоколадного батончика эффективно всего на 0,00000001 % — в том смысле, что при этом высвобождается лишь одна триллионная часть от mc2 — содержащейся в нем энергии. Будь ваш желудок эффективен хотя бы на 0,001 %, одного обеда вам бы хватило до конца жизни. По сравнению с тем, как мы едим, сжигание угля или бензина всего лишь в 3 и 5 раз эффективнее соответственно. Современный атомный реактор, расщепляя ядра урана, производит энергию гораздо продуктивнее, но и он пока не может добыть больше 0,08 % от той, что там есть. Термоядерный реактор в ядре Солнца на порядок более эффективен, чем все, что мы построили, — он добывает 0,7 % содержащейся в ядрах водорода энергии за счет слияния их друг с другом и превращения в ядра гелия. И даже если мы когда-нибудь заключим Солнце в идеальную сферу Дайсона, мы никогда не сможем превратить в полезную для нас энергию больше 0,08 % его массы, потому что как только Солнце израсходует примерно одну десятую содержащегося в нем водорода, оно завершит свою жизнь нормальной звезды и разрастется в красного гиганта, а потом начнет медленно умирать. И для других звезд дела обстоят не лучше: доля водорода, который им удастся израсходовать за время своей нормальной жизни, колеблется от 4 % для самых маленьких звезд до 12 % — для самых больших. Если мы сделаем совершенный ядерный реактор, который будет на 100 % синтезировать весь попадающий в него водород в гелий, мы и в этом случае застрянем на обидно низком показателе в 0,7 % эффективности ядерного синтеза. Что бы такое придумать получше?
В своей книге A Brief History of Time[39] Стивен Хокинг описал электростанцию, работающую на черных дырах[40]. Это, возможно, звучит парадоксом, если вспомнить, что в черной дыре, как считалось долгое время, все, однажды туда попавшее, застревает навеки, и даже свет не может ее покинуть. Однако, как известно, Хокинг сумел рассчитать квантово-гравитационный эффект, благодаря которому черная дыра ведет себя как горячее тело, — причем чем меньше, тем горячее. Это излучение так и стали называть излучением Хокинга. Излучая, черная дыра теряет свою энергию, пока не испарится совсем. Другими словами, какое бы вещество вы ни засунули внутрь черной дыры, оно со временем вылезет обратно в виде теплового излучения, и к тому моменту, когда черная дыра испарится окончательно, все ваше вещество превратится в излучение практически со 100-процентной эффективностью[41].
Проблема с использованием черных дыр в качестве источников энергии, однако же, такова: пока размер дыры не сравняется с размером атома или даже не станет значительно меньше его, на что уйдет больше времени, чем нынешний возраст Вселенной, а пока этого не случится, излучение очень слабое: энергии выделяется не больше, чем от обычной свечки. При уменьшении размера черной дыры излучение растет пропорционально его квадрату, поэтому физики Луис Крейн и Шон Вестмореланд предложили использовать дыры примерно в тысячу раз меньшего размера, чем протон, и по весу примерно равные самому большому океанскому лайнеру{80}. Главное для них заключалось в том, чтобы использовать энергию такой дыры для космического корабля (сюжет, к которому мы еще вернемся), поэтому их интересовала не столько эффективность, сколько портативность, и они предлагали кормить дыру лазерным лучом, исключая всякую возможность превращения энергии в вещество. Но даже если вы будете кормить ее веществом, а не излучением, гарантировать высокую эффективность трудно: чтобы заставлять протоны проваливаться в черную дыру размером в одну тысячную от их собственного, нужна машина вроде Большого адронного коллайдера, увеличивающая их энергию mc2 хотя бы в тысячу раз за счет кинетической энергии (энергии движения). А так как по меньшей мере 10 % этой кинетической энергии потеряется с гравитонами, когда черная дыра испарится, то окажется, что нам приходилось вкладывать в нее гораздо больше энергии, чем мы получим в конце, то есть ее эффективность и вовсе будет отрицательной. Более подробное изучение возможностей использования черной дыры в качестве источника энергии упирается в то, что для этого нам нужна квантовая теория гравитации, которая так до сих пор и не создана, — но эта неопределенность означает также то, что в ней может скрываться полезный квантово-гравитационный эффект, который нам пока неизвестен.