К счастью, есть другие способы получения энергии из черных дыр, которыми можно воспользоваться, не прибегая к квантовой гравитации или какой-нибудь другой, пока еще не очень понятной, физике. Например, многие известные черные дыры очень быстро вращаются, горизонт событий у них закручивается почти до скорости света, вот эту-то энергию и можно извлечь. Горизонт событий черной дыры — это та самая область пространства, где силы гравитации так велики, что даже свет не может ее покинуть. Рис. 6.4 показывает, что над горизонтом событий у вращающейся черной дыры есть так называемая эргосфера — область, где вращающаяся дыра захватывает окружающее ее пространство, а вместе с ним и любую попавшую туда частицу, у которой теперь нет возможности оказаться в состоянии покоя. Если вы забросите какой-нибудь объект в эргосферу, он немедленно будет подхвачен и закружится вокруг дыры. К сожалению, он вскоре будет поглощен черной дырой, навсегда сгинув под ее горизонтом событий, и пользы от него в смысле получения энергии никакой не будет. Однако Роджер Пенроуз показал, что если вы кинете его под правильным углом и при этом расколете на два, как показано на рис. 6.4, то поглощен будет только один осколок, в то время как другой вырвется на свободу с энергией больше той, которую вы ему изначально сообщили. Иными словами, вы успешно превратите часть энергии вращения черной дыры во что-то полезное, что можно будет потом потратить на совершение работы. Проделывая этот фокус много раз, вы можете выдоить из черной дыры всю ее энергию вращения, в результате чего она остановится, а эргосфера у нее пропадет. Если черная дыра вращается так быстро, как только ей позволяют законы природы, и ее горизонт событий фактически движется со скоростью света, то такая стратегия позволит вам превратить в энергию до 27 % ее массы. Тут все еще есть некоторая неопределенность, связанная с нашим незнанием того, насколько быстро вращаются черные дыры в нашем ночном небе, но некоторые наиболее изученные из них, кажется, должны вращаться довольно быстро — от 30 % до 100 % от допустимого максимума скорости. Монструозная черная дыра в центре нашей галактики (она весит в четыре миллиона раз больше нашего Солнца), по всей видимости, вращается так, что если даже превратить в энергию всего 10 % ее массы, получится то же самое, что при превращении в энергию массы 400 тысяч солнц со 100-процентной эффективностью, или примерно столько же энергии, сколько можно получить с помощью сфер Дайсона вокруг 500 миллионов солнц за миллиард лет.
Рис. 6.4
Часть энергии вращения черной дыры можно получить с помощью довольно простого процесса: если запустить частицу А между двух горизонтов, то она расщепится там на две, В и С, одна из которых (С) провалится в черную дыру, а другая (В) — вылетит наружу с энергией, превосходящей начальную энергию частицы А.
Еще одна интересная стратегия заключается в том, чтобы извлекать энергию не из самих черных дыр, а из вещества, в них падающего. Природа уже и сама нашла способ это делать — это квазары. По мере того как газ, закручиваясь, все больше приближается к черной дыре — при этом возникает что-то похожее на гигантскую пиццу, внутренняя часть которой дырой постепенно заглатывается, — он разогревается и исторгает колоссальное излучение. Проваливаясь в дыру, частицы газа разгоняются, поскольку энергия сил притяжения превращается в энергию движения, как у парашютистов. Само движение становится все более беспорядочным, возникающая турбулентность нарушает координированное движение газовых слоев, разбивая его на быстрые и не зависящие друг от друга колебания все меньших частей, пока, наконец, дробление не доходит до отдельных атомов, которые принимаются биться друг о друга со страшной скоростью — собственно, эти беспорядочные столкновения быстро движущихся частиц и означают, что газ сильно разогрелся, и теперь уже энергия столкновений превращается в энергию излучения. Построив сферу Дайсона на безопасном расстоянии от черной дыры, все это излучение можно будет собрать и пустить в дело. Чем быстрее крутится черная дыра, тем на бóльшую эффективность процесса можно рассчитывать, а для черных дыр, вращающихся с максимальной скоростью, эффективность достигает аж целых 42 %[42]. У черных дыр с массой как у звезд бóльшая часть энергии излучается в виде рентгеновских лучей, а у супермассивных звезд, находящихся в центрах галактик, максимум приходится на инфракрасный, видимый или ультрафиолетовый диапазон.
Если горючего, чтобы топить вашу черную звезду, у вас больше нет, вы можете начинать откачивать ее вращательную энергию, как мы описывали выше[43]. В самом деле, природа уже нашла способ, как делать это все наиболее эффективно, пропуская радиацию от аккреционного диска через процедуру с магнитным полем, получившую название «процесс Блэнфорда — Знаека». И тогда, вполне может быть, удастся получить небольшую добавку к нашим 42 %, если использовать магнитные поля и некоторые другие ингредиенты.
Есть еще один известный процесс превращения вещества в энергию без использования черных дыр. Его называют сфалеронным. Этот процесс может разламывать кварки, превращая их в лептоны — в электроны, нейтрино, в их более тяжелых кузенов, мюоны, в тау-частицы или в античастицы всех перечисленных{81}. Как показано на рис. 6.5, стандартная модель в физике элементарных частиц предсказывает, что кварки при подходящих спинах и ароматах могут сходиться вместе и превращаться в лептоны, в промежуточном состоянии побыв недолго сфалероном. Так как в начале процесса масса больше, чем в конце, вся разница должна превратиться в энергию, которая, согласно Эйнштейну, составит ровно E = mc2.
Будущая разумная жизнь, может быть, окажется в состоянии построить то, что я называл сфалерайзером, — генератор энергии, чем-то похожий на дизельный двигатель на стероидах. Традиционный дизель сжимает смесь воздуха с дизельным топливом до такого состояния, когда происходит самовоспламенение смеси, и тогда она быстро расширяется, совершая полезную работу — например, толкая поршень. Углекислый газ вместе с другими продуктами сгорания весит примерно на 0,00000005 % меньше, чем смесь, оказавшаяся под поршнем перед взрывом, эта разница в массе и превращается в тепловую энергию, которая движет машину. Сфалерайзер сжимает обыкновенное вещество до температур в пару квадриллионов градусов, а потом позволяет ему расширяться и остывать, ибо сфалероны уже сделали свое дело[44]. Мы уже знаем, к чему приводят такие опыты, потому что наша молодая Вселенная проделала его за нас 13,8 миллиардов лет назад, когда была такой же горячей: почти все 100 % вещества превращаются в энергию, лишь меньше одной миллиардной его доли остается чем-то похожим на то, из чего делается обычное вещество, — то есть кварками и электронами. Так что это примерно то же самое, что и дизель, с той только разницей, что сфалерайзер в миллиард раз эффективнее. Еще одно достоинство моего мотора в том, что не надо переживать по поводу топлива: для его работы сгодится все, лишь бы там были кварки, то есть просто любое вещество.
Рис. 6.5
Согласно стандартной модели в теории элементарных частиц, девять кварков с правильно подобранными ароматами, сталкиваясь, превращаются в три лептона. Промежуточное состояние получило название сфалерона. Суммарная масса кварков (в нее входит также энергия связи скрепляющих их глюонов) значительно превосходит массу трех вылетающих лептонов. Избыток выделяется в виде энергии, показанной на рисунке вспышками.
Из-за этого высокотемпературного процесса наша малютка Вселенная произвела в триллион раз больше излучения (фотонов и нейтрино), чем вещества (кварков и электронов, которые потом образовали атомы). На протяжении последовавших 13,8 миллиардов лет шла великая сегрегация — она привела к тому, что атомы собрались в галактиках, звездах и планетах, в то время как бóльшая часть фотонов осталась в межгалактическом пространстве в виде микроволнового фонового излучения, которым мы теперь пользуемся, чтобы делать фотографии малютки — ранней Вселенной. Любая развитая форма жизни, поселившаяся в галактиках или где-то в других местах скопления вещества, может поэтому превратить почти все оказавшееся поблизости вещество обратно в энергию, перезагрузив изначальную пропорцию и приведя ее к тому крошечному значению, какое было в ранней Вселенной, на короткое время вернувшись в то горячее и плотное состояние внутри сфалерайзера.
Чтобы понять, насколько эффективен сфалерайзер, надо выяснить несколько практических деталей. Например, насколько он должен быть велик, чтобы предотвратить утечку значительной части нейтрино и фотонов на стадии сжатия? Мы этого пока сказать не можем, но в любом случае ясно: перспективы по части выработки энергии у будущей жизни значительно лучше, чем те, что позволяют нынешние технологии. Нам пока даже не удается построить термоядерный реактор — нашей технологии для этого предстоит еще улучшиться на порядок или даже на два.
Если, как мы убедились, обед в смысле его физической эффективности в 10 миллиардов раз хуже, чем тот предел, который устанавливают для него законы природы, то что мы можем сказать о наших современных компьютерах: насколько они эффективны? Их эффективность, как мы скоро увидим, еще хуже, чем у нашего обеда.
Мне часто приходится представлять моего друга и коллегу Сета Ллойда, единственного человека в MIT, который, как подозревают, такой же одержимый, как и я. Завершив пионерскую работу по квантовым вычислениям, он принялся писать книгу, в которой доказывал, что вся Вселенная — это квантовый компьютер. Мы нередко заходим вместе выпить пива по