сле работы, и мне пока не удалось набрести на такую тему, на которую он не смог бы сказать чего-нибудь интересного и неожиданного. Например, как я уже упоминал в главе 2, у него нашлось много чего сказать по поводу окончательных пределов вычислимости. В одной, ставшей знаменитой, статье 2000 года он показал, что скорость вычислений ограничивается энергией: выполнение элементарной логической операции за время Т требует средних затрат энергии, равных E = 4h/T, где h — это фундаментальная физическая постоянная, носящая имя Макса Планка. Это означает, что килограммовый компьютер в лучшем случае может выполнять 5×1050 операций в секунду — на целых 36 порядков больше, чем способен выполнить тот компьютер, на котором я сейчас пишу эти строки. Мы доберемся до таких значений за пару веков, если производительность компьютеров будет продолжать удваиваться каждые два года, как мы показали в главе 2. Кроме того, у него получалось, что компьютер в 1 кг весом может хранить максимум 1031 бит, что также в миллиард миллиардов раз лучше моего компьютера.
Сет первым согласится, что достичь этого предела будет нелегкой задачей даже для сверхразумной формы жизни: память этого «окончательного» килограммового компьютера будет напоминать взрыв водородной бомбы или небольшой кусочек Большого взрыва. Однако Сет оптимистично полагает, что практические пределы не очень далеки от этих «окончательных». В самом деле, существующие прототипы квантовых компьютеров достигли в своей миниатюризации уровня хранения в один бит на атом, что, при пропорциональном скейлинге, соответствует 1025 бит на килограмм, — а это в триллион раз больше, чем у моего компьютера. Более того, если для коммуникации между атомами использовать электромагнитное излучение, то быстродействие возрастет до 5×1040 операций в секунду, что превышает быстродействие CPU моего компьютера на 31 порядок.
Подводя итог, скажем: вычислительные горизонты будущей жизни просто головокружительны: при сравнении порядков окончательный однокилограммовый компьютер настолько же лучше современного суперкомпьютера, насколько последний лучше мигающего «поворотника» на автомобиле, способного хранить только один бит информации и переключаться между двумя своими состояниями примерно за секунду.
С позиций физики все, что только может стремиться создать будущая жизнь — от обитаемых зон и машин до новых форм жизни, — всего лишь по-особому расположенные элементарные частицы. Как голубой кит представляет собой переупорядоченные клетки криля, а криль — переупорядоченные клетки планктона, так и вся наша Солнечная система — это водород, переупорядоченный за 13,8 миллиардов лет космической эволюции: гравитация помещает водород в звезды, где из него компонуются более тяжелые атомы, после чего гравитация переупорядочивает эти атомы в нашу планету, а там химические и биологические процессы переупорядочивают их в живое вещество.
Будущая жизнь, достигшая своего технологического предела, сможет производить такие переупорядочения частиц гораздо быстрее и эффективнее; сначала с помощью своих вычислительных мощностей она будет находить наиболее эффективные методы, а потом будет следовать найденным методам, полагаясь на доступные источники энергии, для достижения нужного упорядочения частиц. Мы видели, как вещество можно превратить в компьютер и как его можно превратить в энергию, — так что это единственный требующийся фундаментальный ресурс[45]. Как только будущая жизнь доберется до физических пределов и упрется в них, у нее останется единственный ресурс для роста: больше материи. И единственный путь для этого — расширяться во Вселенной. В глубь пространства!
Как добывать ресурсы с помощью космической экспансии
Насколько же велико наше возможное космическое обеспечение? Уточним: каков верхний предел, за которым физические законы окончательно закрывают для нас возможность использования космической материи? Наше космическое обеспечение, разумеется, умопомрачительно велико, — но насколько велико в точности? В табл. 6.2 приведены некоторые ключевые данные. Наша планета мертва на 99,999999 % — в том смысле, что такова доля ее вещества, не входящего в состав биосферы и не делающего ничего полезного для жизни, кроме поддержания гравитационного и магнитного полей. Это соотношение открывает нам возможность однажды воспользоваться для поддержания жизни в сто миллионов раз бóльшим количеством вещества. Если нам каким-то образом удастся оптимизировать использование вещества у себя в Солнечной системе (включая само Солнце), то мы улучшим это соотношение еще в миллион раз. Расселившись по Галактике, мы увеличим свои ресурсы еще в триллион раз.
Возможно, вы думаете, что мы можем наращивать свои ресурсы неограниченно, употребляя для этого одну галактику за другой, если только будем достаточно терпеливы. Но современная космология не предлагает нам такой возможности! Да, сама по себе Вселенная, может быть, и бесконечна, и содержит бесконечно много галактик, звезд и планет — в самом деле, именно это и предполагает простейшая версия теории инфляции, наиболее популярной современной научной парадигмы, в которой наш Большой взрыв 13,8 миллиардов лет назад находит свое логичное объяснение. Однако даже если количество галактик и неограниченно, мы, по-видимому, можем добраться только до конечного их числа: мы можем видеть только около 200 миллиардов галактик, а расселиться — ну никак не больше чем в десяти миллиардах.
Таблица 6.2.
Приблизительное количество вещества, на использование которого будущая жизнь может надеяться.
Нас ограничивает скорость света: один световой год (то есть около десяти триллионов километров) за год. На рис. 6.6 показана та часть пространства, откуда свет смог дойти до нас за прошедшие 13,8 миллиардов лет со времени нашего Большого взрыва, — эта сферическая область известна под названием «наша наблюдаемая Вселенная», или просто «наша Вселенная». Даже если вообще пространство бесконечно, наша Вселенная — конечна, насчитывая «всего» 1078 атомов. Более того, 98 % этой Вселенной открыты нам по принципу «смотри, но не трогай», в том смысле, что, видя их, мы не доберемся туда к ним, даже потратив вечность на путешествие со скоростью света. Почему это так? В конце концов, тот факт, что мы не видим остальных частей Вселенной, есть следствие ее ограниченного возраста — она не бесконечно стара, и свету просто не хватило времени, чтобы добраться до нас! Так разве же мы не сможем достичь как угодно удаленной галактики, если нам просто не надо будет думать о том, сколько времени продлится наше путешествие?
Первое препятствие — наша Вселенная постоянно расширяется, из-за чего расселение по далеким галактикам будет напоминать игру в салки. Второе препятствие состоит в том, что это расширение постоянно ускоряется — в этом повинна загадочная темная энергия, на долю которой приходится 70 % всей материи во Вселенной. Чтобы понять, к каким проблемам это может приводить, представьте себе, что вы выходите на железнодорожную платформу и видите, как ваш поезд медленно набирает ход, но дверь нужного вам вагона пока еще заманчиво открыта. Если вы достаточно проворны и безрассудны, сможете ли вы его догнать? Поскольку поезд, очевидно, может двигаться значительно быстрее, чем вы можете бежать, то ответ на вопрос определяется тем, насколько далеко нужная вам дверь была в момент вашего появления на платформе. Если только дистанция между вами превышала некоторое критическое значение, догнать свой вагон вы никогда не сможете. Подобную ситуацию мы встречаем, пытаясь добраться до далекой галактики, удаляющейся от нас с ускорением: даже путешествуя со скоростью света, мы не сможем догнать те галактики, которые сейчас удалены от нас более чем на 17 миллиардов световых лет, — а это более 98 % галактик в нашей Вселенной.
Рис. 6.6
Наша Вселенная, то есть та часть пространства, ограниченная сферой, откуда свет мог добраться до нас за 13,8 миллиардов лет после Большого взрыва. Изображение, полученное с помощью орбитальной обсерватории Planck, показывает, какой она была в младенчестве, в возрасте всего 400 тысяч лет: тогда она состояла из плазмы, примерно такой же горячей, как поверхность Солнца. Пространство, по-видимому, простирается и за этими пределами, а новое вещество каждый год появляется в поле зрения.
Рис. 6.7
На пространственно-временной диаграмме всякое событие представляется точкой, вертикальные и горизонтальные координаты которой показывают, где и когда соответственно это событие происходит. Если пространство не расширяется (слева вверху), то две половинки конуса ограничивают ту часть пространства-времени, которая на нас на Земле (в вершине конуса) могла оказать определяющее влияние (нижняя половина), и ту, на которую мы можем повлиять сами (верхняя половина), потому что всякое взаимодействие может передаваться со скоростью не больше скорости света. Все становится намного интереснее, когда пространство расширяется (слева внизу и на этой странице вверху). В соответствии со стандартной космологической моделью перемещаться и даже видеть что-либо мы можем только внутри ограниченной области пространства, даже если само пространство и не ограничено. Слева внизу, где изображено нечто, напоминающее бокал для шампанского, мы пользуемся такими координатами, которые компенсируют расширение пространства, и мировые линии далеких галактик вертикальны. В нашу выделенную точку в 13,8 миллиардах световых лет от Большого взрыва свет мог прийти лишь из области, накрытой основанием бокала, и, даже двигаясь со скоростью света, мы никогда не сможем выбраться за пределы верхней части бокала, содержащей около 10 миллиардов галактик. На правом рисунке, где изображено нечто, напоминающее каплю под чашкой цветка, мы пользуемся обычными координатами и видим пространство расширяющимся. Из-за этого основание бокала деформируется, потому что все у его кромок, видимых нам сейчас, в начале времен и в самом деле было очень близко друг к другу.