EcoRI из семейства обнаруженных незадолго до этого рестрикционных ферментов, которые позволили ученым изучать ДНК с беспрецедентной точностью. Фермент EcoRI был главным героем рассказа Бойера, но вниманием аудитории завладели совсем другие подробности, которые ученому разглашать не полагалось, и это запустило цепочку событий, по сей день доставляющих множество хлопот.
Бойер был биохимиком из Калифорнийского университета в Сан-Франциско. Его лаборатория одной из первых выделила и описала рестрикционные ферменты. Эти соединения можно считать молекулярными ножницами, которые предназначены эволюцией для того, чтобы находить и вырезать конкретные последовательности ДНК. Как и было принято в семидесятые, открыв EcoRI, Бойер принялся щедро делиться им с коллегами, чтобы у них была возможность пользоваться ферментом в своих исследованиях. Для нашего сюжета важно, что он отправил EcoRI Полу Бергу, биохимику из расположенного неподалеку Стэнфордского университета.
Лаборатория Берга разрабатывала инструменты для выявления функций генов. Для этого, в частности, можно добавить ген в геном клетки и измерить, меняется ли она, – не стала ли клетка, к примеру, из-за появления нового гена вырабатывать больше белка или расти в другом темпе? Берг мог выращивать культуры (колонии) клеток в чашках Петри в лаборатории, но ему требовался какой-то способ перемещать гены, которые он хотел изучать, в геномы этих клеток. Тут-то ему и пригодился фермент EcoRI с его умением резать ДНК. Берг предполагал при помощи EcoRI разрезать геном, чтобы потом вставлять туда другую ДНК, а затем с помощью другой недавно открытой молекулы лигазы запаивать разрывы.
Берг собирался сплайсировать (срастить) геномы двух вирусов – SV40, небольшого, хорошо изученного вируса, который заражает обезьян, и лямбда-вируса, который заражает бактерии. Главным был выбор лямбды. Вирусы вроде SV40 копируют сами себя, взламывая компоненты механизмов репликации ДНК хозяина, а лямбда-вирус, напротив, воспроизводится, встраивая свой геном непосредственно в ДНК хозяина. Если бы Бергу удалось сплайсировать два вируса вместе, лямбда-вирус вписал бы получившийся комбинированный геном вирусов в геном клетки-хозяина. В случае успеха Берг получил бы новую методику ввода ДНК в геном, идеально подходящую для изучения функций генов.
В 1972 году в лаборатории Берга разрезали кольцевые геномы SV40 и лямбда-вируса и сплайсировали два генома вирусов. Так была создана первая в мире рекомбинантная ДНК – геном, в котором в результате вмешательства генной инженерии сочетаются (то есть, на жаргоне генетиков, рекомбинируются) ДНК больше чем одного организма. Ученые собирались ввести эту рекомбинантную ДНК в бактерию Escherichia coli, поскольку именно ее в природе поражает лямбда-вирус. Однако еще до назначенной даты эксперимента Джанет Мерц, аспирантка, игравшая одну из важнейших ролей в команде Берга, рассказала об их планах ученым из лаборатории Колд-Спринг-Харбор, где проходила курс обучения. Реакция ученых была жесткой. Они напомнили, что E. coli бурно растет в человеческом кишечнике, а SV40, как известно, вызывает рак у мелких млекопитающих. Не исключено, что, проводя подобные эксперименты, команда Берга подвергает себя, а возможно, и весь мир ненужному риску. Мерц сообщила Бергу об этих опасениях, а он обсудил свою работу с другими исследователями и выяснил, что у многих возникают такие же соображения. Тогда Берг прекратил эксперименты. При всей важности этой работы безопасность превыше всего.
Пока Мерц, Берг и прочие сплайсировали вирусы, Стэнли Коэн, еще один ученый из Гарварда, которому Бауэр послал EcoRI, изучал, способен ли EcoRI сплайсировать плазмиды бактерий – маленькие кольцевые молекулы ДНК, которыми бактерии обмениваются, чтобы передать друг другу гены. К радости Коэна, оказалось, что EcoRI и правда может резать бактериальные плазмиды. Воспользовавшись этим открытием, Бойер и Коэн рекомбинировали ДНК из двух бактериальных плазмид и предприняли следующий шаг, введя рекомбинированные плазмиды в клетки E. coli. Они выбрали плазмиды, которые делают E. coli невосприимчивыми к антибиотикам, причем каждая плазмида содержала гены устойчивости к своему антибиотику. Это означало, что ученые могли проверить, увенчался ли успехом их эксперимент, обработав свои бактерии E. coli (как они надеялись, рекомбинантные) обоими антибиотиками. Если колонии выживут, ученые будут знать, что в геном бактерий попали обе плазмиды.
Когда Бойер и Коэн обработали бактерии антибиотиками, колонии выжили. Эксперимент увенчался успехом. Так был создан первый самовоспроизводящийся генно-модифицированный организм, хотя тогда ученые еще не использовали этот термин, в наши дни сильно скомпрометированный.
Вот об этом-то эксперименте с успешным сплайсингом плазмид и введением рекомбинантной плазмиды в E. coli Байер и проговорился на конференции в 1973 году. Кто-то в задних рядах даже якобы воскликнул: «Теперь мы можем составить любую ДНК!» Однако этот рассказ, как и откровения Джанет Мерц в Колд-Спринг-Харбор, был встречен отнюдь не только восторгом. Участники конференции занервничали. ДНК можно сплайсировать, и это, конечно, здорово. Но это были лишь первые эксперименты, а ученые уже успели поработать с вирусами, потенциально способными вызвать рак, и создали бактерии, устойчивые к нескольким антибиотикам. Очевидно, что это мощная технология – но насколько мощная? Ученые стремились узнать больше, однако при этом хотели, чтобы никто не пострадал.
Ближе к концу конференции ее участники написали и отправили письмо в Национальную академию наук и в Медицинский институт с просьбой создать комиссию для оценки риска исследований рекомбинантной ДНК. В письме подчеркивалось, что эксперименты с рекомбинантной ДНК обладают огромным потенциалом и для научного прогресса, и для улучшения здоровья человека, но заставляют задуматься об опасности пока еще неясных результатов рекомбинирования ДНК в лаборатории. Ученые хотели лучше понимать, какие контролирующие и сдерживающие протоколы необходимы, чтобы защитить и людей, работающих в лаборатории, и общество в целом. Они намеревались не дожидаться осложнений, а действовать профилактически.
Тут же были предприняты соответствующие шаги. Сформировали комиссию, объявили мораторий на исследования по созданию рекомбинантных организмов и запланировали международную конференцию, чтобы решить, какое будущее ждет исследования рекомбинантной ДНК. Все эти меры должны были успокоить озабоченное общество, но, увы, возымели обратный эффект. Многие почувствовали, что ученые опасаются худшего, и протесты против технологии рекомбинирования ДНК вспыхнули даже раньше, чем саму технологию смогли оценить по достоинству. Джереми Рифкин, которого следует считать основоположником движения против ГМО, собирал деньги на свою кампанию, запугивая общество и убеждая его, что ученые собираются клонировать людей (технология рекомбинирования ДНК не имеет отношения к клонированию). Озабоченные граждане избирали в Конгресс тех, кто обещал прекратить исследования. Ко времени международной конференции по этим вопросам уже наметилась четкая грань между теми, кто желал успеха исследованиям рекомбинантной ДНК, и теми, кто хотел вообще их запретить.
Конференция, от которой зависело будущее технологии рекомбинирования ДНК, состоялась в феврале 1975 года в Калифорнии, в Асиломарском конференц-центре в Пасифик-Гроув. В числе участников были ученые, специалисты по этике и юристы. Большинство выступило за то, чтобы разрешить продолжать исследования рекомбинантной ДНК, – но не без оговорок. Многие беспокоились о том, что будет, если гены растения или животного вставить в геном бактерии. Вдруг новые гены заставят бактерию как-то вредить растениям или животным? Если животное съест рекомбинантную бактерию, то не смогут ли новые гены перескочить в его геном и потенциально навредить новому хозяину? В итоге собравшиеся согласились, что исследования обладают колоссальным потенциалом и должны продолжаться. Однако все настаивали на строгом регулировании и протоколах сдерживания потенциальных биологических угроз. Участники разъехались после конференции с чувством, что проложили путь к безопасным исследованиям рекомбинантной ДНК.
Итоги Асиломарской конференции обсуждались и в научных кругах, и в популярной прессе. Побывавшие на ней ученые были довольны достигнутым согласием и ожидали того же от общества. Но – нет: активисты-противники биотехнологий воспользовались результатами конференции, целью которых было снизить риск, и постарались еще сильнее всполошить общество. Пошли слухи, что в результате технологии рекомбинирования ДНК вскоре будут созданы супер-бактерии или даже сверхлюди. Раскол между сторонниками и противниками углубился.
После Асиломарской конференции исследования рекомбинантной ДНК возобновились, но под строжайшим надзором. В Кембридже в штате Массачусетс местные политики потребовали, чтобы исследователи работали в изолированных лабораториях, предназначенных для инфекций, распространяющихся по воздуху, несмотря на то, что E. coli по воздуху не распространяется (а даже если бы утечка и произошла, данный штамм все равно не был приспособлен к жизни в человеческом кишечнике). У ученых не было другого выхода, кроме как согласиться с такими ограничениями, хотя это лишь укрепило подозрения общества в том, что исследования очень опасны. И все же в практических возможностях технологии рекомбинантной ДНК никто не сомневался: да, бактерии и впрямь можно заставить делать новые трюки и экспрессировать гены, ради которых люди их создали. Ученые могли при помощи технологии рекомбинирования ДНК изучать функции генов и тем самым ускорять декодирование генома. А если превратить бактерии в живые фабрики белков, то эта технология смягчит нашу зависимость от животных как от источников биологических продуктов.
Не прошло и трех лет после Асиломарской конференции, а биотехнологический стартап