Жизнь на скорости света — страница 19 из 43

{121}. Жить продолжала только ее ДНК-программа.

Как я и надеялся, когда дошло до изучения проблем, возникших при создании минимального генома, инициативой завладела пенсильванская команда. С моей точки зрения, это было особенно важно: это означало, что проблемы поставили ученые, участвующие в основном исследовании и в зарождении самих идей, воплощенных этих достижениях, – а не сердитые или встревоженные люди с улицы, протестующие против того, что их не спросили (пусть даже потом некоторые маргинальные группы и заявят об этом). Авторы указали, что, хотя искушение демонизировать нашу работу может быть непреодолимым, «научное сообщество и публика могут начинать понимать, что стоит на кону, поскольку уже предприняты усилия определить природу занимающейся этим предметом науки и поставить ключевые этические, религиозные и метафизические вопросы так, чтобы их обсуждение могло успевать за наукой. Если этика отстанет от этой линии исследований, то только потому, что мы ей это позволим»{122}.

Далее статья обращалась к широкому кругу проблем – от потенциальной опасности выпуска новых видов для окружающей среды до вопросов патентного права. Однако поскольку реальный синтез таких геномов казался делом очень отдаленного будущего, в большинстве сообщений СМИ был пропущен один из ключевых абзацев, касающийся безопасности: «Знание последовательностей особо опасных патогенов может создать для общественного здравоохранения и безопасности угрозы, способные перевесить выгоды. Это тревожит, поскольку современные способы регулирования почти не обеспечивают надзора за этими технологиями».

Помня о спорах вокруг уничтожения оспы и сомнениях насчет публикации вируса полиомиелита и, возможно, предвидя постоянные будущие заламывания рук в ожидании оживления пандемических штаммов в ходе исследований гриппа{123}, авторы спрашивали, надо ли нам регулировать науку и если да, то в какой мере. Подобные вопросы будут сопровождать каждый следующий шаг науки о синтетических геномах.

Как ни странно для публикации в научном журнале, статья в Science отвела немало места размышлениям о влиянии редукционистской науки на «смысл и происхождение жизни», но не взялась за непростую проблему – что вообще значит это короткое слово «жизнь». Авторы предупреждали:

Есть серьезный риск, что определение и синтез минимальных геномов будут представлены учеными, описаны прессой или восприняты публикой как доказательство, что жизнь – это всего лишь ДНК или может быть сведена к ней… Это может оказаться угрозой для взгляда на жизнь как на нечто особенное. По крайней мере со времен Аристотеля существовала традиция, рассматривающая жизнь как нечто большее, чем просто физические процессы. На ней основано представление о взаимосвязанности всех живых существ и чувство, что они в каком-то важном смысле есть нечто большее, чем организованная материя.

Чо и др. также уделили много внимания религиозным проблемам, словно подчеркивая свою озабоченность ими: «Удивительно, что крупные западные религиозные сообщества почти не проявляли склонности дать определение жизни или обозначить ее суть». Таким образом эта ответственность возлагалась на науку – несмотря на заключение самих авторов, что как раз «чисто научное определение жизни» и вызвало беспокойство.

Самым, пожалуй, настоятельным вопросом, по мнению пенсильванской команды, было «не будет ли такое исследование недозволенным вмешательством в то, что лучше бы оставить природе». Важный – и для меня обнадеживающий – вывод работы вторил тому, что я слышал прежде на обсуждениях: «Преобладающая [религиозная] точка зрения состоит в том, что, хотя есть причины для осторожности, в намерении ученых создать минимальный геном нет ничего такого, что автоматически запрещалось бы обоснованными религиозными соображениями».

Это не значило, однако, что религиозные соображения не имеют отношения к делу. Один взгляд на нашу работу состоял в том, что она знаменует прогресс человечества. Другой – что это лишь новейший пример научной спеси, неизбежно ведущей к катастрофе, – тема, которую снова и снова рассматривает и разрабатывает популярная литература, от голема, одушевленной глиняной фигуры из иудейских легенд, до монстра из «Франкенштейна» Мэри Шелли, «Острова доктора Моро» Уэллса и воскрешенных динозавров из «Парка юрского периода» Майкла Крайтона.

Именно этот вопрос будет определять одиннадцать лет спустя реакцию прессы на наше объявление о первой синтетической клетке, когда все дружно двинутся по одной мысленной дорожке: «А не играем ли мы в Бога?» Статья пенсильванской группы мудро указывала, что это возражение – средство скорее пресечь дискуссии о моральной ответственности за манипуляции жизнью, чем стимулировать их. Она утверждала, что можно найти баланс между пессимистическим взглядом на нашу работу как очередной пример спеси и оптимистическим – как на равносильную «прогрессу человечества». Авторы добавляли, что «хороший распорядитель» продвигал бы работы по геномике осторожно, рассматривая собственные цели и применение новых знаний в свете чтимых традиций. Они заключали, что нет веских этических причин, по которым команда должна была бы воздержаться от продолжения работы в этой области, пока она продолжает участвовать в публичных обсуждениях – что мы и делаем.

Глава 6. Первый синтетический геном

Нынешние машины для будущего – как древние ящеры для человека.

Сэмюел Батлер, 1872{124}

Стремление манипулировать жизнью в лаборатории прошло долгий путь от зари эпохи рекомбинантной ДНК в 1970-х, когда Пол Берг, Герберт Бойер и Стэнли Коэн начали резать и склеивать ДНК. К концу десятилетия появился лабораторный штамм E. coli, генетически измененный таким образом, чтобы производить человеческий инсулин. С тех пор ученые заставили бактерии делать человеческие факторы свертывания крови для лечения гемофилии и гормон роста для лечения карликовости. В сельском хозяйстве ДНК изменяли, чтобы сделать растения устойчивыми к засухе, вредителям, гербицидам и вирусам; чтобы увеличить урожайность и питательную ценность; для производства пластмасс{125}; для снижения использования удобрений. Гены животных меняли, чтобы увеличить выход продуктов, создать модели человеческих болезней, сделать такие лекарства, как антикоагулянты, и получить «очеловеченное» молоко и свиные органы, которые можно пересаживать людям. Генно-модифицированные клетки использовались для производства белков, от антител до эритропоэтина, который повышает производство эритроцитов. Некоторые пациенты испытали на себе генную терапию, в ходе которой в геном некоторых клеток тела добавляется программная «вставка», чтобы лечить генетические нарушения: иммунодефицит, слепоту и врожденное свойство крови – бета-талассемию.

Сегодня генная инженерия превратилась в то, что более известно как синтетическая биология. Различие между биологией молекулярной и синтетической стерто, и в большинстве применений реальной разницы нет. «Синтетическая биология» просто звучит привлекательнее – точно так же физиология заместилась «биологией систем», а некоторые вполне традиционные химики предпочли переназвать свою работу нанотехнологией. Но как ни назови, а по всему земному шару множество ученых занимается генной инженерией, сочетая биологию с инженерными подходами.

Последние достижения слишком многочисленны, чтобы приводить их подробный список, но вот всего лишь несколько примеров генно-инженерных открытий. Рабочая лошадка молекулярно-биологических лабораторий, E. coli, была в 2003 году{126} частично минимизирована (удалено 15 % ее ДНК) Фредериком Блаттнером из Университета Висконсина, пытавшимся сделать ее более надежной основой для промышленного производства. В Гарварде лаборатория Джорджа Чёрча разработала метод, названный MAGE – мультиплексное автоматическое проектирование генома, чтобы заменить кодон в тридцати двух штаммах E. coli, а затем побудить эти частично отредактированные штаммы эволюционировать так, чтобы получить клеточную линию, в которой этот кодон будет заменен{127} во всех 314 позициях. В лаборатории Кристофера Фойгта в МТИ была собрана изощренная генетическая схема – будучи вставлена в бактерию, она может, например, сделать ее чувствительной к четырем разным онкомаркерам и заставить в присутствии всех четырех выпускать убивающий опухоль фактор{128}. Коллега Фойгта Тимоти Лу разработал модули ДНК, которые могут выполнять логические операции. Такие живые вычислительные элементы, способные принимать решения, можно модифицировать для множества применений{129}. По мере совершенствования технологии цели неизбежно становятся всё амбициознее и возникают новые вопросы, которые в свою очередь приведут к дальнейшему развитию технологии.

Наша предполагаемая работа по синтезу генома живой клетки требовала гораздо более глубокого понимания того, какие гены необходимы для жизни. Чтобы ответить на этот вызов, нам нужно было применить разнообразные приемы, как мы уже успешно делали раньше при секвенировании человеческого генома; успех в современной науке всё больше зависит от хорошей командной работы{130}. Чтобы создать синтетическую клетку, мы запустили три большие программы. По опыту нашей работы с phi X 174 мы все решили, что наибольшего сосредоточения усилий требует синтез ДНК, если мы хотим провести его успешно. Поэтому первой командой стала группа синтеза ДНК, которой предстояло синтезировать полную бактериальную хромосому. Эту группу возглавлял Хэм Смит, а входили в нее Дэниел Гибсон, Гвинед Бендерс, Синтия Эндрюс-Фанкох, Евгения Денисова, Холли Баден-Тильсон, Джейшри Завери, Тимоти Стокуэлл, Анушка Браунли, Дэвид Томас, Миккель Элджир (Algire), Чак Мерриман, Ли Янг, Владимир Носков, Джон Гласс и Клайд Хатчинсон III. Я был уверен, что проблемы с химией разрешимы, и больше беспокоился о биологии. Сможем ли мы трансплантировать и установить синтетический геном, если преуспеем в его синтезе, и сможем ли мы лучше понять, какие гены составляют необходимый минимум для жизни? Поэтому вторая и третья команды сосредоточились на биологии. Команду трансплантации генома возглавлял Джон Гласс, в нее входили Кароль Лартиг, Нина Альперович, Ремберт Пайпер и Прашант Пармар. Командой минимального генома руководили Джон Гласс и Клайд Хатчинсон, и она включала Насиру Ассад-Гарсиа, Нину Альперович, Шибу Юсеф, Мэтью Льюиса и Махира Маруфа. Хотя состав всех трех команд частично перекрывался, каждая сосредоточенно занималась своей задачей. Руководителями всего проекта были Хэм, Клайд и я, а когда был учрежден Институт Вентера в Ла-Хойе и Хэм с Клайдом отбыли осваивать запад, роль общего лидера в Роквилле стал играть Джон Гласс.