Мы планировали синтезировать самый маленький известный геном, который может создать живую самовоспроизводящуюся клетку, M. genitalium. Мы думали, что этот синтез будет величайшей задачей и что он может позволить нам еще сильнее редуцировать маленький геном, определив по ходу понимания и препарирования генетических инструкций простой клетки минимальный для жизни набор генов. Для такого синтеза мы разделили геном M. genitalium на сто один сегмент, которые мы называли «кассетами», каждый примерно того же размера, что и геном phi X 174. Мы знали, что можем точно делать куски синтетической ДНК размером от пяти до семи тысяч пар оснований, и нам было нужно найти способ сочетать их так, чтобы реконструировать геном M. genitalium. Геном M. genitalium из 582 970 пар оснований был в двадцать раз больше, чем что-либо синтезированное раньше. До этой работы самыми большими синтетическими конструкциями из ДНК были два маленьких вируса и поликетидный генный кластер из 32 000 пар оснований. (Поликетиды – это кольцеобразные молекулы, которые в природе выделяют бактерии, грибы, растения и морские животные, чтобы убивать хищников; они служат основой для многих лекарств, особенно антибиотиков и противораковых агентов{131}.)
Итак, нам было нужно разработать новый набор инструментов для надежного синтеза крупных молекул ДНК. Развитие инструментов и технических приемов – основа научного прогресса, но, на мой взгляд, не менее важна тщательность выполнения процедур. Мне часто приходилось описывать лабораторную работу в геномике взятым из информатики «мусор на входе – мусор на выходе»[16]: если не соблюдать предельной тщательности при выполнении каждого шага, конечный результат будет в лучшем случае гораздо слабее, чем мог бы быть. Когда мы в 1990-х секвенировали первые геномы, мы обнаружили, что если наши библиотеки ДНК (содержащие небольшие фрагменты генома) были не высочайшего качества и не представляли собой истинно случайной выборки из всей ДНК в интересующем нас геноме, то шансов, что компьютер сможет использовать последовательности, сгенерированные по тем библиотечным образцам, для реконструкции последовательности генома, было очень мало. То же самое можно сказать об использованной для секвенирования ДНК, чистоте реагентов и воспроизводимости техник. Всё должно быть высшего качества. Моя команда обращала особое внимание на эти фундаментальные требования, и в результате мы оказались действительно способны получать очень высококачественные данные о последовательности ДНК.
Однако, как обсуждалось в 5-й главе, качество секвенирования ДНК, необходимое для чтения генетического текста, намного ниже, чем то, что требуется для написания текста, способного поддерживать жизнь. В первом случае нас устраивала точность не более одной ошибки на 10 000 пар оснований. Может показаться, что это очень мало ошибок, но использование этого стандарта означало бы, что у нас было бы около 60 ошибок в геноме M. genitalium и более 300 000 ошибок в человеческом геноме. Ясно, что столь неточные данные вряд ли смогут поддерживать жизнь и явно недостаточны для точного диагноза генных изменений у человека, ассоциированных с той или иной болезнью. Типичный человеческий ген может состоять из тысяч и даже миллионов пар оснований, поэтому данный уровень ошибок может означать множество ошибок секвенирования в одном гене. Чтобы представить, что это значит: всего одна ошибка в гене может вызвать серьезную болезнь, например серповидноклеточную анемию. Иными словами, такой уровень ошибок вряд ли можно считать приемлемым для реконструкции генома и создания живой клетки.
Эти простые факты часто забывают, фантазируя об оживлении вымерших видов по их секвенированным геномам. Журналистские рассуждения, вдохновленные великими достижениями палеогенетики – геномом неандертальца, прочитанным Сванте Паабо{132}, или секвенированием ДНК шерстистого мамонта в Университете штата Пенсильвания{133}, всегда сворачивают на возбужденные мечтания о воскрешении видов{134}. Я прочел слишком много статей, бодренько обсуждающих восстановление неандертальцев или мамонта с помощью клонирования, хотя сиквенсы ДНК обоих созданий очень фрагментированы, не покрывают всего генома и – в силу глубокой деградированности – гораздо менее точны, чем те, что обычно получают при чтении свежей ДНК.
Тем не менее прочтение неандертальской ДНК было изумительным достижением науки, поведавшим нам многое о нашей собственной эволюции, установив, что скрещивание некоторых предков современных людей с нашими неандертальскими кузенами оставило нам в наследство 3–4 % нашего генома, восходящие к неандертальцам.
Чтобы синтезировать геном M. genitalium, нам требовалось чрезвычайно точное секвенирование ДНК. Проведенное нами секвенирование двух первых геномов в 1995 году опиралось на ранние модели секвенаторов ДНК, и хотя ошибок было меньше, чем одна на десять тысяч пар оснований, мы опасались, что такой точности может быть недостаточно для порождения живой клетки. Нам ничего не оставалось, кроме как пересеквенировать геном M. genitalium, используя новейшие технологии. Новый сиквенс показал, что наша исходная версия имела точность до одной ошибки на тридцать тысяч пар оснований, и когда мы скомбинировали старую и новую версии, то получили менее одной ошибки на сто тысяч пар – примерно с полдюжины на весь геном. И вот с этой новой высокоточной последовательности мы приступили к синтезу генома M. genitalium.
Наш успех с конвертированием цифровой записи генома phi X 174 в реальную ДНК придал нам достаточно уверенности, чтобы приняться за значительно больший геном свободно живущего организма. Умея производить с большой точностью отрезки размером с вирусный геном, мы понимали, что можем надеяться на успех, если сумеем разбить бактериальную хромосому на такие фрагменты и найдем надежный способ сшивания их всех вместе.
Мы нарезали геном микоплазмы на 101 кассету от пяти до семи тысяч пар оснований каждая. Кассеты были вырезаны так, чтобы каждая перекрывалась с соседними на 80–360 пар оснований, так что мы могли их накладывать друг на друга, как конструктор лего. Мы так спроектировали наши кассеты, что последовательности ДНК в зоне перекрываний были комплементарными: если последней буквой в одной кассете была Т, то она стремилась связаться с А в другой. Подобно застежке-молнии, перекрывающиеся участки сцеплялись между собой комплементарными основаниями, образуя спираль.
Наша попытка создать синтетический геном отличалась еще двумя особенностями. Во-первых, геном M. genitalium, как и phi X, кольцеобразный, поэтому мы спроектировали кассету № 101 так, чтобы она перекрывалась с кассетой № 1. Во-вторых, мы хотели, чтобы у нас был безотказный способ отличить наше изделие от природного генома M. genitalium. Чтобы исключить непонимание и двусмысленность, нам нужно было иметь возможность всегда проследить синтетический геном и неопровержимо доказать, что новой синтетической клеткой управляет именно он, а не примесь от исходной клетки или генома.
Мы хотели поставить подпись в новом геноме (как художники подписывают свои работы), чтобы отличать его от природного. И вот, использовав однобуквенные обозначения аминокислот, мы создали последовательности – «водяные знаки», которые читались как «Институт Вентера» и Synthetic Genomics, Inc., а также фамилии главных участников проекта. Мы использовали разные кодоны для представления каждой из двадцати букв аминокислотного «алфавита» (в нем представлены не все буквы латинского алфавита, поэтому, например, вместо U мы писали V). Мое имя, закодированное подобным образом, выглядит так:
TTAAЦTAГЦTAATГTЦГTГЦAATTГГAГTAГAГAAЦAЦAГAAЦГATTAAЦTAГЦTAA[17].
Эти «водяные знаки» были вставлены в пять разных кассет, разнесенных по геному. Нам также нужно было вставить ген устойчивости к антибиотику, что позволило бы нам избирательно убивать клетки, в которых нет нашего синтетического генома, и таким образом отбирать те, где он есть. Мы вставили ген устойчивости к антибиотикам внутрь ключевого гена M. genitalium – MG408, который нужен этой бактерии, чтобы прилипать к клеткам млекопитающих. Тем самым мы надежно искалечили этот ген, играющий важную роль в способности микроба вызывать болезнь, гарантировав, что синтетический организм будет безвредным.
Чтобы наша команда могла сосредоточиться на ключевом этапе – сборке 101 кассеты в геном, – я настоял, чтобы мы предложили трем компаниям, занимающимся синтезом ДНК, контракт на изготовление для нас 101 спроектированной кассеты. Несмотря на рекламные объявления, мы нашли только одну компанию, которая могла делать фрагменты в пять – семь тысяч пар оснований. Кроме того, это было дорого: синтез ДНК стоит примерно 1 доллар за каждую пару оснований, так что один сырой материал для нас должен был стоить больше полумиллиона долларов. Принимая на себя такое серьезное финансовое обязательство, мы были полны решимости заставить наших контрагентов работать.
Одной из главных трудностей было – как соединить 101 кассету. Первая идея пришла из наших прежних проектов по синтезу геномов. В результате наших попыток охватить как можно более широкое биологическое разнообразие я узнал о весьма примечательном организме, который мог восстанавливать свой геном после значительных радиационных повреждений. В 1999 году мы опубликовали статью «Полное секвенирование генома устойчивой к радиации бактерии Deinococcus radiodurans R1»{135}, в которой был описан геном необычного организма, способного выдержать до трех миллионов рад ионизирующей радиации. Если учесть, что смертельная доза такой радиации для человека – всего пятьсот рад, то как может